
November 2004

version 6.6

 Debugging Memory
Problems

using
TotalView

Copyright © 1999–2004 by Etnus LLC. All rights reserved.
Copyright © 1998–1999 by Etnus, Inc.
Copyright © 1996–1998 by Dolphin Interconnect Solutions, Inc.
Copyright © 1993–1996 by BBN Systems and Technologies, a division of BBN Corporation.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, elec-
tronic, mechanical, photocopying, recording, or otherwise without the prior written permission of Etnus LLC. (Etnus).

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights
in Technical Data and Computer Software clause at DFARS 252.227-7013.

Etnus has prepared this manual for the exclusive use of its customers, personnel, and licensees. The information in this man-
ual is subject to change without notice, and should not be construed as a commitment by Etnus. Etnus assumes no responsi-
bility for any errors that appear in this document.

TotalView and Etnus are registered trademarks of Etnus LLC.

TotalView uses a modified version of the Microline widget library. Under the terms of its license, you are entitled to use these
modifications. The source code is available at http://www.etnus.com/Products/TotalView/developers.

All other brand names are the trademarks of their respective holders.

Debugging Memory Problems Using TotalView: version 6.6 iii

Contents

1 Debugging Memory Problems
Checking for Problems ... 2
Programs and Memory ... 2
Behind the Scenes .. 5
Your Program’s Data ... 8

The Data Section .. 8
The Stack .. 8
The Heap .. 12

Finding Allocation Problems ... 12
Finding Deallocation Problems ... 13
realloc() Problems ... 13
Finding Memory Leaks .. 13

Using the Memory Debugger .. 15
Memory Debugger Overview ... 15
Enabling, Stopping, and Starting .. 17

Finding free() and realloc() Problems .. 17
Error Notification .. 18
Types of Problems .. 19

Freeing Unallocated Space ... 19
Freeing Memory That Is Already Freed ... 20
Tracking realloc() Problems ... 20
Freeing the Wrong Address ... 20

Finding Memory Leaks .. 21
Using Watch Points ... 22

Fixing Dangling Pointer Problems ... 23
Dangling Pointers .. 24
Block Painting ... 26
Hoarding ... 27

2 Using the Memory Debugger Window
About the Memory Debugger ... 29
Configuration Page ... 32
Leak Detection Page ... 36
Heap Status Page ... 40

Contents

iv Debugging Memory Problems Using TotalView: version 6.6

Memory Usage Page ... 42

3 Using the dheap Command
dheap Example .. 45
dheap.. 47

Notification When free Problems Occur ... 54
Showing Backtrace Information: dheap –backtrace: .. 55
Memory Reuse: dheap –hoard ... 55
Checking for Dangling Pointers: dheap –is_dangling: .. 56
Detecting Leaks: dheap –leaks ... 57
Block Painting: dheap –paint .. 58
Deallocation Notification: dheap –tag_alloc .. 59

TV_HEAP_ARGS ... 60

4 Creating Programs for Memory Debugging
Linking Your Application With the Agent .. 61
Attaching to Programs .. 63

Using the Memory Debugger .. 64
MPICH ... 64
IBM PE ... 64
SGI MPI ... 65
RMS MPI .. 65

Installing tvheap_mr.a on AIX .. 66
LIBPATH and Linking .. 66

Debugging Memory Problems Using TotalView: version 6.6 1

Debugging Memory
Problems 1

Any time you read about debugging, you read that 60 or 70% of all
programming errors are memory-related. So, while these numbers
may be wrong, let’s assume that they are right. Now for the bad news:
the reason that memory errors occur is that the programmer made
an error. All memory errors are preventable.

Why are there so many memory errors? There are many answers. For
example, programs are complicated. And, programmers make
assumptions when they shouldn’t. Is a library function allocating its
own memory or should the program be allocating it? Once it is allo-
cated, does your program manage the memory or does the library?
Something creates a pointer to something and the memory is freed
without any knowledge that something else is pointing to it. Or, and
these are the most prevalent reason, there’s a wide separation
between lines of code or the time when old code and new code was
written. And, of course, there’s always insufficient and bad docu-
mentation.

Some problems can be irrelevant. If you forget to free the memory
allocated for a small array, it doesn’t mean much. And, it may even
be more efficient not to free the memory. The operating system will
free it for you when the program ends, so there are times when you
don’t want to bother. On the other hand, if you continually allocate
memory without freeing it, your program may eventually crash
because it can’t get more memory.

Checking for Problems

2 Chapter 1: Debugging Memory Problems

Checking for Problems _________________
The TotalView Memory Debugger can help you locate many of your
program’s memory problems. For example, you can:

■ Stop execution when free(), realloc(), and other heap API problems oc-
cur.
If your program tries to free memory that it can’t or shouldn’t free, the
Memory Debugger can stop execution. This lets you identify the state-
ment that caused the problem. For more information, see “Finding free()
and realloc() Problems” on page 17.

■ List leaks.
The Memory Debugger can display your program’s leaks. (Leaks are mem-
ory blocks that are allocated, but which are no longer referenced.)
When your program allocates a memory block, the Memory Debugger cre-
ates a backtrace. When it makes a list of your leaks, it includes this back-
trace in the list. This lets you see the place where your program allocated
the memory block. For more information, see “Finding Memory Leaks” on
page 21.

■ Paint allocated and deallocated blocks.
When your program’s memory manager allocates or deallocates memory,
the Memory Debugger can write a bit pattern into it. Writing this bit pat-
tern is called painting.
When you see this bit pattern in a Variable or Expression List Window, you
know that you are using memory before your program initializes it or after
your program deallocates it. Depending upon the architecture, you might
even be able to force an exception when your program accesses this
memory. For more information, see “Block Painting” on page 26.

■ Identify dangling pointers.
A dangling pointer is a pointer that points into deallocated memory. If the
pointer being displayed in a Variable Window is dangling, TotalView adds
information to the data element so that you know about the problem. For
more information, see “Dangling Pointers” on page 24.

■ Hold onto deallocated memory.
When trying to identify memory problems, holding onto memory after
your program releases it can sometimes help locate problems by forcing
a memory error to occur. Holding onto freed memory is called hoarding.
If you are also painting memory, you can know when your program is try-
ing to access deallocated memory. For more information, see “Hoarding”
on page 27.

Programs and Memory _________________
When you run a program, your operating system loads the program into
memory and defines an address space in which the program can operate.
For example, if your program is executing in a 32-bit computer, the address
space is approximately 4 gigabytes.

Programs and Memory

Debugging Memory Problems Using TotalView: version 6.6 3

1. M
em

ory Problem
s

Since the discussion in this chapter is pretty general, what you will be reading is almost
true for many computer architectures, somewhat wrong for all, and perhaps completely
wrong for the computer upon which you are debugging memory problems. For accurate
information, you’ll need to read information provided by your vendor.

The operating system does not actually allocate the memory in this
address space. Instead, operating systems memory map this space, which
means that it maps the relationship between the theoretical address space
your program could use and what it actually uses. Typically, operating sys-
tems divide memory into pages. When a program begins executing, the
operating system creates a map that correlates the executing program with
the pages that contain the program’s information. The following figure
shows regions of a program. The arrows point to the memory pages that
contain the program.

In this figure, the stack contains three stack frames, each mapped to its
own page. Similarly, the heap shows two allocations, each of which is
mapped to its own page. (This isn’t what really happens since a page can
have many stack frames and many heap allocations. But doing this makes a
nice picture.)

Figure 1: Mapping Program
Pages

Program

Heap

Stack

library
library
library

available

➊

➋

➌

➊

➋

available

Programs and Memory

4 Chapter 1: Debugging Memory Problems

The program did not emerge fully-formed into this state. It had to be com-
piled, linked, and loaded. The following figure shows a program whose
source code resides in four files. Running these files through a compiler
creates object files. A linker then merges these object files and any external
libraries needed into a load file. This load file is the executable program
that is stored on your computer’s file system.

When the linker creates the load file, it combines the information con-
tained in each of the object files into one unit. Combining them is relatively
straightforward. The load file shown at the bottom of this figure simplifies
this file’s contents, since it always contains more sections and more infor-
mation.

Figure 2: Compiling Programs

source
file

source
file

source
file

object
file

object
file

object
file

object
file

library
file

library
file

source
file

compile

link

data section

symbol table
section

machine code
(text) section

header section

Load File

Behind the Scenes

Debugging Memory Problems Using TotalView: version 6.6 5

1. M
em

ory Problem
s

The contents of these sections are as follows:

■ Data section—contains static variables and variables initialized outside
of a function. The following is a small sample program:
int my_var1 = 10;
void main ()
{

static int my_var2 = 1;
int my_var3;
my_var3 = my_var1 + my_var2;
printf(“here’s what I’ve got: %i\n”, my_var3);

}
The data section contains the my_var1 and my_var2 variables. The mem-
ory for the my_var3 variable is dynamically and automatically allocated
within the stack by your program’s runtime system.

■ Symbol table section—contains addresses (usually offsets) to the lo-
cations of routines and variables.

■ Machine code section—contains an intermediate binary representation
of your program. (It is intermediate because addresses are not yet resolved.)

■ Header section—contains information about the size and location of
information in all other sections of the object file.

When the linker creates the load file from the object and library files, it
interweaves these sections into one file. The linking operation creates
something that your operating system can load into memory. Figure 3 on
page 6 shows this process.

The Memory Debugger can provide information about these sections and
the amount of memory your program is using. To obtain this information,
select the Tools > Memory Debugging command and then select the
Memory Usage tab and select Process View. (See Figure 4 on page 7.)

In this listing, the data and symbol table sections of the load file are com-
bined into the Data column.

For information on this page, see “Memory Usage Page” on page 42.

Behind the Scenes _____________________
The TotalView Memory Debugger intercepts calls made by your program to
heap library functions that allocate and deallocate memory using the
malloc() and free() functions and the new and delete operators. It also
tracks related functions such, as calloc() and realloc(). The Memory Debug-
ger uses a technique called interposition, in which an agent intercepts calls
to functions.

You can use the Memory Debugger with any allocation and deallocation
library that uses such functions as malloc() and free(). For example, the
C++ new operator is almost always built on top of the malloc() function. If
it is, the Memory Debugger can track it. Similarly, some Fortran implemen-
tations use the malloc() and free() functions to manage memory. In these
cases, the Memory Debugger can track Fortran memory use.

Behind the Scenes

6 Chapter 1: Debugging Memory Problems

You can interpose the agent in two ways:

■ You can tell TotalView to preload the agent. Preloading means that the loader
loads an object before the object listed in the application’s loader table.
When a routine references a symbol in another routine, the linker
searches for the first definition of that symbol. Because the agent’s rou-
tine is the first object in the table, its routine is invoked instead of the rou-
tine in the program’s heap manager.
On Linux, HP Tru64 Alpha, Sun, and SGI, TotalView sets an environment
variable that contains the pathname of the agent’s shared library in your
local TotalView installation. For more information, see “Attaching to Pro-
grams” on page 63.

■ If TotalView cannot preload the agent, you must explicitly link it into your
program. For details, see “Creating Programs for Memory Debugging” on
page 61.
If your program attaches to an already running program, you must explic-
itly link this other program with the agent.

Figure 3: Linking a Program

Machine Code
(text) Section

Symbol Table
Section

Data
Section

Header
Section

Machine Code
(text) Section

Symbol Table
Section

Data
Section

Header
Section

Machine Code
(text) Section

Symbol Table
Section

Data
Section

Header
Section

Data
Section

Symbol Table
Section

Machine Code
(text) Section

Header
Section

Behind the Scenes

Debugging Memory Problems Using TotalView: version 6.6 7

1. M
em

ory Problem
s

The agent uses operations defined in the dynamic linker’s API to find the
original definition of the routine. After the agent intercepts a call, it calls
the original function. This means that you can use the Memory Debugger
with most memory allocators. The following figure shows how the agent
interacts with your program and the heap library.

Figure 4: Memory Usage
Page: Process View

Figure 5: Interposition

ptr = malloc(...);

program

agent

heap

malloc

place information
in agent tables

returned
value

interceptor

recorder

interceptor and recorder

TotalView obtains
backtrace

manager

Your Program’s Data

8 Chapter 1: Debugging Memory Problems

Because TotalView uses interposition, memory debugging can be consid-
ered non-invasive. That is, TotalView doesn’t rewrite or augment your pro-
gram’s code, and you don’t have to do anything in your program. Adding
the agent does not change your program’s behavior.

Your Program’s Data ___________________
Your program’s variables resides in the following places:

■ Data section
■ Stack
■ Heap

The Data Section Memory in the data section is permanently allocated. Your program uses
this section for storing static and global variables. The size of this section is
fixed when the operating system loads the program and the variables
within it exist for the entire time that your program is executing. Errors can
occur if your program tries to manage this section’s memory. For example,
you cannot free memory allocated to variables in the data section. In gen-
eral, errors are usually related to the programmer not understanding that
the program can’t manage data section memory.

The Stack Memory in the stack section is dynamically managed by your program’s
memory manager. Consequently, your program cannot allocate memory
within the stack or deallocate memory within it.

“Deallocates means that your program is no longer using this memory. The next time
your program calls a routine, the new stack frame overwrites the memory previously
used by other routines. In almost all cases, deallocated memory, whether on the stack or
the heap, just hangs around in its preallocation state until it gets reassigned.

The stack differs from the data section in that the space is dynamically
managed. What’s in it one minute might not be there a moment later. Your
program’s runtime environment allocates memory for stack frames as your
program calls routines and deallocates these frames when execution exits
from it.

At a minimum, a stack frame contains lots of control information, data
storage, and space for passed-in arguments (parameters) and the returned
value. Figure 6 on page 9 shows three ways in which a compiler can arrange
stack frame information:

In this figure, the left and center stack frames have different positions for
the parameters and returned value. The stack frame on the right is a little
more complicated. In this version, the parameters are located within a
stack memory area that doesn’t belong to either stack frame.

If a stack frame contains local (sometimes called automatic) variables,
where is this memory placed? If the routine has blocks in which memory is
allocated, where on the stack is this memory for these additional variables

Your Program’s Data

Debugging Memory Problems Using TotalView: version 6.6 9

1. M
em

ory Problem
s

placed? Although there are many variations, the following figure shows two
of the more common ways to allocate memory:

The blocks on the left shows a data block allocated within a stack frame on
a system that ignores your routine’s block structure. The compiler figures
how much memory is needed, and then allocates enough memory for all of
your routine’s automatic variables. These kinds of systems are optimized
to minimize the time necessary to allocate memory. Other systems dynami-
cally allocate the memory required for a block as the block is entered, and
then deallocate it as execution leaves the block. (The blocks on the right
show this.) These kinds of systems are optimized to minimize a routine’s
size.

Figure 6: Placing Parameters

Control
information

Returned
value

Parameters

Local data

Returned
value

Control
information

Local data

Parameters

Returned
value

Control
information

Local data

Parameters

Returned
value

Control
information

Local data

Parameters

Control
information

Local data

Returned
value

Returned
value

Control
information

Local data

Parameters

Figure 7: Local Data in a Stack
Frame

Returned
value

State
information

Local data

Parameters

Parameters

State
information

Local data

Returned
value

Block data

Your Program’s Data

10 Chapter 1: Debugging Memory Problems

As your program executes routines, routines call other routines, placing
additional routines on the stack. The following figure shows four stack
frames. The shaded areas represents local data.

What happens when a pointer to memory in a stack frame is passed to
lower frames? This situation is shown in the following figure:

The arrows on the left represent the pointer passed down the stack. The
lines and arrows on the right indicate the place to which the pointer is
pointing. A pointer to memory in frame 1 is passed to frame 2, which
passes the pointer to frame 3, and then to frame 4. In all frames, the
pointer points to a memory location in frame 1. Stated in another way, the
pointers in frames 2, 3, and 4 point to memory in another stack frame. This
is considered the most efficient way for your program to pass data from
one routine to another. Using the pointer, you can both access and alter
the information that the pointer is pointing to.

Sometimes you read that data can be passed by-value (which means copying it) or by-
reference (which means passing a pointer). This really isn’t true. Something is always
copied. “Pass-by-reference” means that instead of copying the data, the program copies
a pointer to the data.

Because the program’s run-time system owns stack memory, you cannot
free it. Instead, it gets freed when a frame is popped from the stack.

Figure 8: Four Stack Frames

Stack frame 4

Stack frame 3

Stack frame 2

Stack frame 1

Figure 9: Passing Pointers

Stack frame 4

Stack frame 3

Stack frame 2

Stack frame 1

Your Program’s Data

Debugging Memory Problems Using TotalView: version 6.6 11

1. M
em

ory Problem
s

One of the reasons for memory problems is that you it may sometimes be
unclear who owns a variable’s memory. For example, in the following figure,
the routine in frame 1 has allocated memory in the heap, and passes a
pointer to that memory to other stack frames:

If the routine executing in frame 4 frees this memory, all pointers to that
memory are dangling; that is, they point to deallocated memory. If the pro-
gram’s memory manager reallocates this heap memory block, the data
accessible by all the pointers is both invalid and wrong. Unfortunately, if
the memory manager doesn’t immediately reuse the block, the data
accessed through the pointers is still correct. This is unfortunate, because
there’s no guarantee that the data is correct and there won’t be any pat-
tern to when the block becomes invalid. This means that when problems
occur, they are intermittent, which makes them even harder to locate.

Another common problem is when you allocate memory and assign its
location to an automatic variable. This is shown in the following figure:

If frame 4 returns control to frame 3 without deallocating the heap memory
it created, this memory is no longer accessible. That is, your program loses
the ability to use this memory block. It has leaked this memory block.

If you have trouble remembering the difference between a leak and a dangling pointer,
this may help. Before either problems occurs, memory is created on the heap and the
address of this memory block is assigned to a pointer. A leak occurs when the pointer

Figure 10: Allocating a Memory
Block Heap memory

Stack frame 4

Stack frame 3

Stack frame 2

Stack frame 1

Figure 11: Allocating a Block
form a Stack Frame

Heap memory
Stack frame 4

Stack frame 3

Stack frame 2

Stack frame 1

Your Program’s Data

12 Chapter 1: Debugging Memory Problems

gets deleted, leaving a block with no reference. In contrast, a dangling pointer occurs
when the memory block is deallocated, leaving a pointer that points to deallocated mem-
ory. Both are shown in the following figure.

The Memory Debugger Leak Detection Page shows all of your program’s
leaks. For information on detecting leaks, see “Finding Memory Leaks” on
page 21.

The Heap The heap is an area of memory that your program uses when it wants to
dynamically allocate space for data. While using the heap gives you a con-
siderable amount of flexibility, you must manage this resource. You allocate
and deallocate this space. In contrast, you do not allocate or deallocate
memory in other areas.

Because allocation and deallocation are intimately linked with your pro-
gram’s algorithms and, in some cases, the way you use this memory is
implicit rather than explicit, problems associated with the heap are the
hardest to find.

Finding Allocation Problems
Memory allocation problems are seldom due to allocation requests. Instead,
they occur because your program either is using too much memory or is
leaking it. Because an operating system’s virtual memory space is large,
allocation requests usually succeed. Nevertheless, you should always
check the value returned from allocation requests such as malloc(), calloc(),
and realloc(). Similarly, you should always check whether the C++ new
operator returns a null pointer. (Newer C++ compilers throw a bad_alloc
exception.) If your compiler supports the new_handler operator, you can
throw your own exception.

You can tell the Memory Debugger to stop execution when your program
encounter memory allocation problems. However, since these problems
are rare, you might never come across one.

Figure 12: Leaks and Dangling
Pointers ptr

ptr ptr

leaked memory dangling pointer

normal allocation

Your Program’s Data

Debugging Memory Problems Using TotalView: version 6.6 13

1. M
em

ory Problem
s

Finding Deallocation Problems
The Memory Debugger can let you know when your program encounters a
problem deallocating memory. Some of the problems it can identify are:

■ free not allocated: An application calls the free() function using an ad-
dress that is not in a block allocated in the heap.

■ realloc not allocated: An application calls the realloc() function using
an address that is not in a block allocated in the heap.

■ Address not at start of block: A free() or realloc() function receives a
heap address that is not at the start of a previously allocated block.

If a library routine use the memory manager and a problem occurs, the
Memory Debugger still locates the problem. For example, the strdup()
string library functions call the malloc() function to create memory for a
duplicated string. Since the strdup() function is calling the malloc() func-
tion, the Memory Debugger can track this memory.

You can tell the Memory Debugger to stop execution just before your pro-
gram misuses a heap API operation. This lets you see what the problem is
before it actually occurs. (For more information, see “Behind the Scenes” on
page 5.)

Because execution stops before your program’s heap manager deallocates memory, you
can use the Thread > Set PC command to set the PC to a line after the free request.
This means that you can continue debugging past a problem that might cause your pro-
gram to crash.

realloc() Problems
The realloc() function can create unanticipated problems. This function can
either extend a current memory block, or create a new block and free the
old. Although you can check to see which action occurred, you need to
code defensively so that problems do not occur. Specifically, you must
change every pointer pointing to the memory block to point to the new
one. Also, if the pointer doesn’t point to the beginning of the block, you
need to take some corrective action.

In the following figure, two pointers are pointing to a block. After the
realloc() function executes, ptr1 points to the new block. However, ptr2 still
points to the original block, a block that was deallocated and returned to
the heap manager. (See Figure 13 on page 14.)

Finding Memory Leaks
Technically, there’s no such thing as a memory leak. Memory doesn’t leak,
can’t leak. With that said, a memory leak is a block of memory that a pro-
gram allocates that is no longer referenced. For example, when your pro-
gram allocates memory, it assigns the block’s location to a pointer. A leak
can occur if one of the following occurs:

■ You assign a different value to that pointer.
■ The pointer was a local variable and execution exited from the block.

Your Program’s Data

14 Chapter 1: Debugging Memory Problems

If your program leaks a lot of memory, it can run out of memory. Even if it
doesn’t run out of memory, your program’s memory footprint becomes
larger. This increases the amount of paging that occurs as your program
executes. Increased paging makes your program run slower.

Here are some of the circumstances in which memory leaks occur:

■ Orphaned ownership—your program creates memory but does not
preserve the address so that it can deallocate it at a later time.
The following example makes this (extremely) obvious:
char *str;

for(i = 1; i <= 10; i++)
{

str = (char *)malloc(10*i);
}
free(str);
Within the loop, your program allocates a block of memory and assigns its
address to str. However, each loop iteration overwrites the address of the
previously created block. Because the address of the previously allocated
block is lost, its memory can never be made available to your program.

■ Concealed allocation—the action of creating a memory block is sepa-
rate from its use.
As an example, contrast the strcpy() and strdup() functions. Both do the
same thing: they make a copy of a string. However, the strdup() function
uses the malloc() function to create the memory it needs, while the
strcpy() function uses a buffer that your program creates.
In general, you must understand what responsibilities you have for allo-
cating and managing memory. For example, when your program receives
a handle from a library, the handle allows you to identify a memory block
allocated by the library. When you pass the handle back to the library, it
knows what memory block contains the data you want to use or manipu-

Figure 13: realloc() Problem
before calling realloc()

after calling realloc()

ptr 1

ptr 2

ptr 1

ptr 2

Using the Memory Debugger

Debugging Memory Problems Using TotalView: version 6.6 15

1. M
em

ory Problem
s

late. There may be a considerable amount of memory associated with the
handle, and deleting the handle without deallocating the memory associ-
ated with the handle leaks memory.

■ Changes in custody—the routine creating a memory block is not the
routine that frees it. (This is related to concealed allocation.)
For example, routine 2 asks routine 1 to create a memory block. At a later
time, routine 2 passes a reference to this memory to routine 3. Which of
these blocks is responsible for freeing the block?
This type of problem is more difficult than other types of problems in that
it is not clear when the data is no longer needed. The only thing that
seems to work consistently is reference counting. In other words, when
routine 2 gets a memory block, it increments a counter. When it passes a
pointer to routine 3, routine 3 also increments the counter. When routine
2 stops executing, it decrements the counter. If it is zero, the executing
routine frees the memory. If it isn’t zero, another routine frees it at
another time.

■ Underwritten destructors:—when a C++ object creates memory, it
must ensure that its destructor frees it. No exceptions. This doesn’t
mean that a block of memory cannot be allocated and used as a general
buffer. It just means that when an object is destroyed, it needs to com-
pletely clean up after itself.

For more information, see “Finding free() and realloc() Problems” on page 17.

Using the Memory Debugger ___________
Here is how you start the TotalView Memory Debugger:

1 Enable the Memory Debugger from within the Memory Debugger Window
or the CLI. You must enable the Memory Debugger before execution
begins.

2 Tell the Memory Debugger what operations to perform. These operations
include hoarding, painting, and telling it to notify you when problems
occur using the heap library. Notification means that the Memory Debugger
stops a program’s execution when problems using the heap API occur.

Whenever your program is stopped—for example, it is at a breakpoint or
you halted it—you can tell the Memory Debugger to create a view that
describes any program leaks or a report that describes currently allocated
memory blocks.

Memory Debugger
Overview

TotalView must be able to preload your program with the Memory Debug-
ger agent. In many cases, it can do this automatically. However, you must
manually link the agent if your application involves remote debugging. In
addition, TotalView cannot preload the agent for applications that run on
IBM RS/6000 platforms. For more information, see “Creating Programs for
Memory Debugging” on page 61.

Using the Memory Debugger

16 Chapter 1: Debugging Memory Problems

The following procedure describes how you begin using the Memory
Debugger:

1 After you start TotalView but before you start executing your program,
select the Tools > Memory Debugging command. The displayed window
shows the Configuration Page.

2 Before configuring the Memory Debugger, select one or more of the pro-
cesses shown in the Process Set area on the left.

3 If the Enable memory debugging check box isn’t checked, you need to
select it. If you have explicitly linked your program with the agent,
TotalView automatically checks it for you.

4 Start your program and run it to a breakpoint.

Before your program begins execution, you may want to set other options
in the Configuration Page:

■ Memory Block Painting—tell the Memory Debugger to paint allocated
and deallocated memory and the pattern that the Memory Debugger
uses when it paints this memory. For more information, see “Finding free()
and realloc() Problems” on page 17 and “Memory Block Painting” on page 33.

■ Memory Hoarding—tell the Memory Debugger to hoard deallocated
memory blocks, the size of the hoard, and the number of blocks that the
hoard can contain. For more information, see “Memory Hoarding” on
page 35.

Figure 14: Configuration
Page

Finding free() and realloc() Problems

Debugging Memory Problems Using TotalView: version 6.6 17

1. M
em

ory Problem
s

■ Memory Error Notification—tell the Memory Debugger to stop execu-
tion and notify you if a heap library problem occurs.

Enabling,
Stopping, and
Starting

If your program is executing, you cannot enable or disable the Memory
Debugger. If you try, TotalView displays its Restart Now? Dialog Box:

Selecting Restart now tells TotalView to kill your program, enable the Mem-
ory Debugger, and then restart your program. If you select Restart later,
your program continues executing. After you restart your program, the
Memory Debugger will do what you asked it to.

If you turn on notification and all you want to do is stop TotalView from
notifying you about heap problems, Remove the check mark from the Con-
figuration Page’s Stop execution when an allocation or deallocation error
occurs check box. While the Memory Debugger continues to track memory
events, it no longer stops execution if a problem occurs. Of course, your
operating system might terminate execution when an error occurs. How-
ever, your program might continue executing. For example, many systems
ignore a program to execute a free() request that tries to free memory that
your program already freed.

Telling the Memory Debugger not to notify you when a problem occurs is
useful. For example, suppose you are calling functions in a shared library,
and you aren’t interested in or can’t debug this code and the library has
heap problems. Turning off notification lets you execute past this code. Do
this by setting a breakpoint at a location after the library function executes.
When execution stops, enable notification.

Finding free() and realloc() Problems _____
The Memory Debugger detects problems that occur when you allocate,
reallocate, and free heap memory. This memory is usually allocated by the
malloc(), calloc(), and realloc() functions, and deallocated by the free() and
realloc() functions. In C++, the Memory Debugger tracks the new and
delete operators. If your Fortran libraries use the heap API, the Memory
Debugger tracks your Fortran program’s dynamic memory use. Some For-
tran systems use the heap API for assumed-shape, automatic, and allocat-
able arrays. See your system’s man pages and other documentation for
more information.

Figure 15: Restart Now Dialog
Box

Finding free() and realloc() Problems

18 Chapter 1: Debugging Memory Problems

Error Notification After you enable memory debugging and turn on notification, TotalView
stops execution if it detects a notifiable event such as a free problem. Exe-
cution stops at an internal TotalView breakpoint. As the following figure
shows, the lines above the breakpoint have information about what to do
next.

TotalView also displays its Memory Error Details Window:

Notice the following:

■ The Error detection line tells you what type of error occurred
■ The large central area contains a function backtrace if the memory error is

related to a block allocated on the heap. These are the stack frames that
existed when your program allocated a block. The current backtrace—
that is, the backtrace in the Process Window—can be very different.
If you click on a stack frame in this area, TotalView resets the Process Win-
dow to this frame.

■ The bottom area contains the block’s memory address and its size.

In some cases, the Memory Debugger does not display a backtrace. For example, if you
try to free memory allocated on the stack or in a data section, there’s no backtrace asso-
ciated with the memory block. TotalView still displays a Memory Error Details Dialog
Box that contains a message such as: “No stack trace available for this memory error.”

If you need to redisplay the Memory Error Details Window after you dismiss
it, select the Tools > Memory Details command.

Figure 16: TotalView Internal
Memory Breakpoint

Figure 17: Memory Error
Details Window

Finding free() and realloc() Problems

Debugging Memory Problems Using TotalView: version 6.6 19

1. M
em

ory Problem
s

Types of Problems This section presents some trivial programs that illustrate some of the
free() and realloc() problems that the Memory Debugger detects. The errors
shown in these programs are obvious. Errors in your program are, of
course, more subtle.

Freeing Unallocated Space
The following section contains programs that free space that they cannot
deallocate.

Freeing Stack
Memory

The following program allocates stack memory for the stack_addr variable.
Because the memory was allocated on the stack, the program cannot deal-
locate it.

int main (int argc, char *argv[])
{

void *stack_addr = &stack_addr;
/* Error: freeing a stack address */

free(stack_addr);
return 0;

}

Freeing bss Data The bss section contains uninitialized data. That is, variables in this section
have a name and a size but they do not have a value. Specifically, these
variables are your program’s uninitialized static and global variables.
Because they are contained in a data section, your program cannot free
their memory.

The following program tries to free a variable in this section:

/* Not initialized; should be in bss */
static int bss_var;

int main (int argc, char *argv[])
{

void *addr = (void *) (&bss_var);
/* Error: address in bss section */

free(addr);
return 0;

}

Freeing Data
Section Memory

If your program initializes static and global variables, it places them in your
executable’s data section. Your program cannot free this memory.

The following program tries to free a variable in this section:

 /* Initialized; should be in data section */
static int data_var = 9;

int main (int argc, char *argv[])
{

void *addr = (void *) (&data_var);
/* Error: adress in data section */

free(addr);
return 0;

}

Finding free() and realloc() Problems

20 Chapter 1: Debugging Memory Problems

Freeing Memory That Is Already Freed
The following program allocates some memory, then releases it twice. On
some operating systems, your program can SEGV on the second free request.

int main (int argc, char *argv[])
{

char *prog_name = argv[0];
void *s;

/* Get some memory */
s = malloc(sizeof(int)*200);

/* Now release the memory */
free(s);

/* Error: Release it again */
free(s);
return 0;

}

Tracking realloc() Problems
The following program passes a misaligned address to the realloc() func-
tion.

int main (int argc, char *argv[])
{

char *s, *misaligned_s, *realloc_s;

/* Get some memory */
s = malloc(sizeof(int)*64);

/* Reallocate memory using a misaligned address */
misaligned_s = s + 8;
realloc_s = realloc(misaligned_s, sizeof(int)*256));
return 0;

}

In a similar fashion, TotalView detects realloc() problems caused by passing
addresses to memory sections whose memory cannot be released. For
example, TotalView detects problems if you try to do the following:

■ Reallocate stack memory.
■ Reallocate memory in the data section.
■ Reallocate memory in the bss section.

Freeing the Wrong Address
TotalView can detect when a program tries to free a block that does not
correspond to the start of a block allocated using the malloc() function.
The following program illustrates this problem:

int main (int argc, char *argv[])
{

char *s, *misaligned_s;

Finding Memory Leaks

Debugging Memory Problems Using TotalView: version 6.6 21

1. M
em

ory Problem
s

/* Get some memory */
s = malloc(sizeof(int)*64));

/* Release memory using a misaligned address */
misaligned_s = s + 8;
free(misaligned_s);
free(s);
return 0;

}

Finding Memory Leaks _________________
The TotalView Memory Debugger can locate your program’s memory leaks
and display information about them.

1 Before execution begins, enable the Memory Debugger. (See “Enabling,
Stopping, and Starting” on page 17.)

2 Run the program and then halt it where you want to look at memory prob-
lems. Allow your program to run for a while before stopping execution to
give it enough time to create leaks.

3 From the Memory Debugger Window (invoked using the Tools > Memory
Debugging command), select the Leak Detection tab. (See Figure 18 on
page 21.)

4 Select one or more processes in the Process Set area.

Figure 18: Heap Status
Page: Source View

Finding Memory Leaks

22 Chapter 1: Debugging Memory Problems

5 Select a view within the Generate View area and click the Generate View
button. For example, you might select Source View.

6 Examine the list. After you select a leak in the top part of the window, the
bottom of the window shows a backtrace of the place where the memory
was allocated. After you select a stack frame in the backtrace, TotalView
displays the statement where the block was created.

A backtrace is a list of stack frames. The Memory Debugger displays a list that contains
the stack frames that existed when you asked the heap manager to allocate memory.

The backtrace that the Memory Debugger displays is the backtrace that
existed when your program made the heap allocation request. It is not the
current backtrace.

The line number displayed in the Memory Debugger Source Pane is the
same line number that TotalView displays in the Process Window Source
Pane. If you go to that location, you can begin devising a strategy for fixing
the problem. Sometimes you get lucky and the fix is obvious. In most
cases, it isn’t clear what was (or should be) the last statement to access a
memory block. Even if you figure it out, it’s extremely difficult to determine
if the place you located is really the last place your program needs this
data. At this point, it just takes patience to follow your program’s logic.

Many users like to generate a view that contains all leaks for the entire pro-
gram. Do this by setting a breakpoint on your program’s exit statement.
After your program stops executing, generate a Leak Detection View.

You can use the CLI to save the report, as follows:

1 Select the Tools > CLI Window command.
2 After you see the CLI prompt, capture the dheap –leaks output. The fol-

lowing statement shows how you could write this information to a file:
exec cat << [capture dheap -leaks] > \

/home/reports/leaks.txt

Using Watch
Points

For many types of memory problems, identifying where the problem
occurred is just the first step. Your next step is to look for the solution.
TotalView and the Memory Debugger can help. For example, here’s a proce-
dure that lets you identify when your program writes to a memory block:

1 Using the backtrace in the Leak Detection Page, identify where your pro-
gram allocated the memory.

2 Go to the Process Window and set a breakpoint after that line.
3 Restart your program and run it to that breakpoint.
4 Dive on the pointer and, if it is not automatically dereferenced, dive on

the pointer in the Variable Window.
5 Select the Tools > Watchpoint command and set a watchpoint.
6 Select Go.

Your program stops executing when the value contained at this memory
location changes. If there are a number of statements in your program that
write into this memory location, you might need to select Go a number of

Fixing Dangling Pointer Problems

Debugging Memory Problems Using TotalView: version 6.6 23

1. M
em

ory Problem
s

times. Eventually, you will know when the last time your program changes a
value. Watchpoints do not, unfortunately, get triggered when your program
reads data.

Fixing Dangling Pointer Problems ________
Fixing dangling pointer problems is usually more difficult than fixing other
memory problems. First of all, you only become aware of them when you
realize that the information your program is manipulating isn’t what it is
supposed to be. Even more troubling, these problems can be intermittent,
happening only when your program’s heap manager reuses a memory
block. For example, if nothing else is running on your computer, the block
might never be reused. If there are a large number of jobs running, a deallo-
cated block could be reused quickly.

After you identify that you have a dangling pointer problem, you have two
problems to solve. The first is to determine where your program freed the
memory block. The second is to determine where it should free this memory.
Memory Debugger tools that can help you are:

■ Block painting, which tells the Memory Debugger to write a bit pattern
into allocated and deallocated memory blocks.

■ Hoarding, which tells the Memory Debugger to hold onto a memory
block when the heap manager receives a request to free it. This is most
often used to get beyond where a problem occurs. By allowing the pro-
gram to continue executing with correct data, you sometimes have a
better chance to find the problem. For example, if you also paint the
block, it becomes easy to tell what the problem is. In addition, your pro-
gram might crash. (Crashing while you are in TotalView is a good thing,
because TotalView will show the crash point. You immediately know
where the problem is.)

■ Watchpoints, which tell TotalView to stop execution when a new value is
written into a memory block. If the Memory Debugger is painting deallo-
cated blocks, you immediately know where your program freed the
block.

■ The dheap –tag_alloc CLI command, which tells TotalView to stop execu-
tion when your program deallocates or reallocates memory.

You enable painting and hoarding in the Memory Debugger Configuration
Page. (See Figure 19 on page 24.)

You can turn painting and hoarding on and off. In addition, you can tell the
Memory Debugger what bit patterns to use when it paints memory. For
more information, see “Block Painting” on page 26.

Fixing Dangling Pointer Problems

24 Chapter 1: Debugging Memory Problems

Dangling Pointers If you enable memory debugging, TotalView displays information in the
Variable Window about the variable’s memory use. The following small pro-
gram allocates a memory block, sets a pointer to the middle of the block,
and then deallocates the block:

main(int argc, char **argv)

{

int *addr = 0; /* Pointer to start of block. */

int *misaddr = 0; /* Pointer to interior of block. */

addr = (int *) malloc (10 * sizeof(int));

misaddr = addr + 5; /* Point to block interior */

/* Deallocate the block. addr and */

/* misaddr are now dangling. */

free (addr);

}

Figure 19: Configuration
Page

Fixing Dangling Pointer Problems

Debugging Memory Problems Using TotalView: version 6.6 25

1. M
em

ory Problem
s

The following figure shows two Variable Windows. Execution was stopped
before the free() function executed. Both windows contain a memory indi-
cator saying that blocks are allocated.

After your program executes the free() function, the messages change, as
the following figure shows:

Figure 20: Allocated Description
in a Variable Window

Figure 21: Dangling Description
in a Variable Window

Fixing Dangling Pointer Problems

26 Chapter 1: Debugging Memory Problems

Block Painting When you enable block painting, TotalView paints a memory block with a
bit pattern. You can either specify a pattern or use the default, as follows:

■ The default allocation pattern is 0xa110ca7f, which was chosen because
it resembles the word “allocate”.

■ The default deallocation pattern is 0xdea110cf, which was chosen be-
cause it resembles the word “deallocate”. In most cases, you want
TotalView to paint memory blocks when they are deallocated.

The following figure shows a variable whose memory was painted:

If the Memory Debugger paints memory for a variable that uses more memory than a
word—for example, a double-precision variable—the value that TotalView displays in
the Variable Window won’t look like the paint pattern. For example, the value in an
allocated memory block for a double-precision number is: -6.81916624944375e-147.
You need to cast the variable into an array to see this pattern. Or, if you recognize that
this number is the pattern, you don’t need to cast the value.

Setting the allocation pattern lets you know if your program has initialized
a variable. For example, if you display the variable in a Variable Window and
see the paint pattern, you’ll immediately know that you have a problem.

If you also set a watchpoint on the memory block before your program
deallocates it—you might only be able to set it on the first few words of the
block—TotalView stops program execution just after the Memory Tracker
paints it.

If you are setting a watchpoint on just one element of a structure or an
array, you need to dive on the element so that it is the only item in the Vari-
able Window. For example, if you want to set a watchpoint on the colour
variable in the previous figure, dive on colour, and then select the Tools >
Watchpoint command to set the watchpoint.

If you change the deallocation pattern while your program executes, the
pattern lets you know when the block was deallocated. That is, because the
Memory Debugger is using a different pattern after you change it, you will
know if the memory was allocated or deallocated before or after you made
the change.

Figure 22: Block Painting

Fixing Dangling Pointer Problems

Debugging Memory Problems Using TotalView: version 6.6 27

1. M
em

ory Problem
s

If you are painting deallocated memory, you could be transforming a work-
ing program into one that no longer works. This is good as TotalView will be
telling you about a problem.

Hoarding You can stop your program’s memory manager from immediately reusing
memory blocks by telling the Memory Debugger to hoard (that is, retain)
blocks. Because memory blocks aren’t being immediately reused, the data
within the blocks isn’t being overwritten. This means that your program can
continue running with the correct information even though it is accessing
deallocated memory. If this weren’t the case, any pointers into this memory
block would be dangling. In some cases, this uncovers other errors, and
these errors can help you track down the problem.

If you are painting and hoarding deallocated memory (and you should be),
you might be able to force an error when your program accesses the
painted memory.

The Memory Debugger holds onto hoarded blocks for a while before
returning them to the heap manager so that the heap manager can reuse
them. As the Memory Debugger adds blocks to the hoard, it places them in
a first-in, first-out list. When the hoard is full, the Memory Debugger
releases the oldest blocks back to your program’s memory manager.

You can set the amount of memory that the Memory Debugger hoards
using the controls in the Configuration Page.

Fixing Dangling Pointer Problems

28 Chapter 1: Debugging Memory Problems

Debugging Memory Using TotalView: version 6.6 29

Using the Memory
Debugger Window

2

This chapter examines the Memory Debugger Window. It includes
the following topics:

■ “About the Memory Debugger” on page 29
■ “Configuration Page” on page 32
■ “Leak Detection Page” on page 36
■ “Heap Status Page” on page 40
■ “Memory Usage Page” on page 42

About the Memory Debugger ___________
When you configure the Memory Debugger or display a view, the action that
the Memory Debugger takes is based on the processes that you select on
the left side of the window. (The figure on the next page shows this win-
dow.)

The controls in the Generate View area tell the Memory Debugger which
view to create on the right side of the window. This information is called a
view because the Memory Debugger just shows a part of the information
contained in the Memory Debugger tracking agent. (For information on this
agent, see “Behind the Scenes” on page 5.)

Process Set
Selection

Configuring the Memory Debugger tells it which processes to track and
what actions to perform. For example, the Memory Debugger Window
shown on the next page can track more than one program. One of these
programs has more than one process. If you select three processes out of
the twelve processes in this window, a leak detection view only shows leaks
from these three processes. It ignores leaks in other processes.

About the Memory Debugger

30 Chapter 2: Using the Memory Debugger Window

Be careful how many processes you select. With large multiprocess programs, you might
be asking the Memory Debugger to process and analyze an enormous amount of data.
In most cases, if you select one or two significant processes, you’ll receive the informa-
tion you need. Although the process of generating a view is lengthy, you can redisplay
the information quickly after the Memory Debugger creates it.

Generate View When you are viewing any page except the Configuration Page, you must
tell the Memory Debugger which view it should display. The controls in this
area of the window are as follows:

Pulldown list Select a view from this list. Clicking on the arrow on the
right side of this list of views displays your choices.

Click this button to display a dialog box that contains
preferences that modify or affect a view. The discussion
of that page in other sections of this chapter contains
information about these preferences.

Generate View After you select a view, pressing this button tells the
Memory Debugger to display the view.

Figure 23: Configuration
Page

About the Memory Debugger

Debugging Memory Using TotalView: version 6.6 31

2. M
em

ory Tracker W
indow

Rows and
Columns

If a page displays information in columns, you can resize columns, change
the column order, and control which columns the Memory Debugger dis-
plays, as follows:

■ To resize a column, place the mouse pointer over the vertical column
separator in the header. Press your left mouse button and drag the sepa-
rator so that you’ve made the column as wide or as narrow as you want it
to be. After you finished dragging the separator, release the left mouse
button. The following figure shows the second column being made wider:

If you double-click on a separator, the Memory Debugger readjusts all
widths.

■ To change the column order, place your mouse pointer in a column
header, press your left mouse button, and then drag the column to its
new position. After it is in its new position, release the left mouse but-
ton. In the following example, the Begin Address column is being moved
to the left:

■ To tell the Memory Debugger to hide a column or display a column you
previously hid, right-click anywhere in the column header area. From the
displayed context menu, click on an entry. If the entry is hidden, the
Memory Debugger displays it. If the column is displayed, the Memory
Debugger hides it. The following figure shows this context menu:

■ To tell the Memory Debugger to sort a column, click on the column
heading. You can only sort some columns.

Figure 24: Resizing

Figure 25: Changing Position

Figure 26: Displaying and
Hiding Columns

Configuration Page

32 Chapter 2: Using the Memory Debugger Window

Configuration Page ____________________
The controls on the Configuration Page direct the actions that the Memory
Debugger performs. The following figure shows this page:

While you must explicitly tell the Memory Debugger to track your program’s use of the
heap API, you do not need to enable memory debugging to obtain a Memory Usage
View.

The Enable memory debugging check box tells the Memory Debugger if it
should track your program’s use of the heap API. Most computing architec-
tures allow TotalView to enable the Memory Debugger before your program
begins executing. However, TotalView cannot directly enable programs that
run on an IBM RS/6000 or which run remotely. See Chapter 4, “Creating Pro-
grams for Memory Debugging,” on page 61 for more information. If TotalView
can dynamically enable memory debugging, selecting this button loads the
Memory Debugger.

Figure 27: Configuration
Page

Configuration Page

Debugging Memory Using TotalView: version 6.6 33

2. M
em

ory Tracker W
indow

You cannot check or uncheck this button while your program is executing.
If you try, the Memory Debugger opens a dialog box asking if it should
restart your program.

The third line of this error message has the name of the program or process
that must be restarted.

Memory Block
Painting

When you enable memory block painting, the Memory Debugger writes a
bit pattern into newly allocated and newly deallocated heap memory
blocks. For information on using block painting, see “Block Painting” on
page 26.

Here is a description of these controls:

Pattern for allocations
The Memory Debugger uses the bit pattern in this box
when it paints heap memory that was just deallocated.
It uses the same pattern for normal allocations and
zero-initialized allocations, which are allocations cre-
ated by functions such as calloc(). The pulldown list
contains patterns that you used previously.

When you click the button to the right of the pattern
box, the Memory Debugger displays a dialog box into
which you can type a new pattern:

Figure 28: Restart Now Dialog
Box

Figure 29: Memory Block
Painting Area

Figure 30: Allocation Paint
Pattern Dialog Box

Configuration Page

34 Chapter 2: Using the Memory Debugger Window

If your program has not started executing, the Memory
Debugger might not be able to display a pattern. If it
cannot display a pattern, it displays <Default>.

You can change this pattern at any time and as many
times as you want while your program is executing.
Changing the pattern can help you identify when your
program allocated a memory block. For example, when
you see a pattern, you can tell if it was painted before
or after you made a change.

If a data value is greater than the number of bits that
the Memory Debugger can paint, TotalView interprets
the value using the number of bytes that the variable
uses, not the number of bytes in the paint pattern. This
means that you might need to cast the displayed value.

If you uncheck this box, the Memory Debugger stops
painting allocated memory. You can recheck this box at
a later time without having to restart your program.

Apply pattern to allocations
Checking this box tells the Memory Debugger to paint
allocated memory using the bit pattern shown in the
Pattern for allocations text field.

Apply pattern to zero initialized allocations
Checking this box tells the Memory Debugger to paint
allocated memory that is set to zero by calls such as
calloc() using the bit pattern shown in the Pattern for
allocations text field.

You cannot paint zero-allocated memory unless you are
also painting normal allocations. If you remove the
check from the Apply pattern to allocations box, the
Memory Debugger also removes the check from this
box.

Enabling this option can break your program if you depend
upon the allocated memory being set to zero.

Pattern for deallocations
The Memory Debugger uses the bit pattern in this box
when it paints newly deallocated heap memory. For
more information, see “Pattern for allocations” on page 33.

Apply pattern to deallocations
Checking this box tells the Memory Debugger to paint
deallocated memory using the bit pattern shown in the
Pattern for deallocations text field.

Configuration Page

Debugging Memory Using TotalView: version 6.6 35

2. M
em

ory Tracker W
indow

Memory
Hoarding

The Memory Debugger can delay your program’s ability to immediately give
back freed memory. This is called hoarding. For more information, see
“Hoarding” on page 27.

Here is a description of these controls:

Hoard memory on deallocation
Click on this check box to tell the Memory Debugger to
hoard memory. You can check this box while your pro-
gram is executing.

If you remove the check while your program is execut-
ing, the Memory Debugger no longer hoards newly
deallocated blocks. It does not, however, release
blocks that it previously retained.

If the hoard is full and the Memory Debugger needs to
hoard a new block, it releases the oldest blocks (that is,
those that it first hoarded) so there’s enough room in
its hoard buffer. You can change the size of the hoard
using the next two controls.

Maximum KB to hoard
By default, the hoard can grow to 256 KB. You can
change the hoard’s buffer size by changing this value.

Maximum blocks to hoard
By default, the hoard can contain up to 32 memory
blocks. You can change the number of blocks by chang-
ing this value.

Memory Error
Notification

If a problem occurs using a function within the heap API, the Memory
Debugger can tell TotalView to stop the program’s execution so that you
can locate the problem. For more information, see “Finding free() and realloc()
Problems” on page 17.

Here is a description of this control:

Stop execution when an allocation or deallocation error occurs
Checking this box tells the Memory Debugger to stop
program execution and display a dialog box when it

Figure 31: Memory Hoarding
Area

Figure 32: Memory Error
Notification Area

Leak Detection Page

36 Chapter 2: Using the Memory Debugger Window

detects that a problem occurred using the heap API.
For example:

You can turn notification on and off both before and
while your program is executing.

Leak Detection Page ___________________
The Memory Debugger can display information about the leaks it discovers
in two ways: using a Source View or a Backtrace View. Each view displays
approximately the same information.

Be careful how many processes you select. With large multiprocess programs, you might
be asking the Memory Debugger to process and analyze an enormous amount of data.
In most cases, if you select one or two significant processes, you’ll receive the informa-
tion you need. Although the process of generating a view is lengthy, you can redisplay
the information quickly after the Memory Debugger creates it.

Source View The Source View organizes the leaks in your program by the program, rou-
tine, file, and block.

To create this view:

■ Select the processes for which you want information in the Process Set
area.

■ Select Source View, and then select Generate View.

In this view, the first column, Process, contains a hierarchical display orga-
nizing your program’s information. The Backtrace and Source Panes con-
tain additional information about the line you select in the Memory Blocks
Pane. In other words, this view organizes the information in the same way
that your program is organized.

Figure 33: Memory Error
Details Window

Leak Detection Page

Debugging Memory Using TotalView: version 6.6 37

2. M
em

ory Tracker W
indow

The following figure shows a Source View.

The bottom-most rows in the hierarchy contain information about an indi-
vidual leak. As you go up the tree towards the process name, the Memory
Debugger summarizes the number of bytes and the number of leaks associ-
ated with the information at lower levels of the tree. In this example, the
program leaked 450 bytes and 9 allocations were associated with leaks.
Because each block has the same backtrace ID (1), you can tell that they all
came from the same location in the program. If the numbers were different,
the same routine might still be implicated. However, a different backtrace
number indicates that the routine was invoked in a different way.

When you click on a line in the Memory Blocks Pane, the Memory Debugger
shows information in the Backtrace Pane, as follows:

■ The backtrace being displayed is the one that existed when your pro-
gram allocated the memory block. The Memory Debugger highlights the
frame that it thinks is the one you should be focusing on. That is, it high-
lights where the memory allocation was made. If it guesses wrong, you

Figure 34: Leak Detection
Page: Source View

Leak Detection Page

38 Chapter 2: Using the Memory Debugger Window

can reset the hierarchy of backtraces by right-clicking your mouse on the
backtrace that you want displayed, as follows.

From the context menu, select Set allocation focus level.
For example, assume that you have created a function named
my_malloc() that filters all of your memory allocations. The Memory
Debugger would probably guess that this is the function to highlight in the
Backtrace Pane. However, you probably want to set the allocation focus
on the function that called my_malloc(). Do this by selecting that func-
tion, and then right-clicking on it to invoke the Set allocation focus level
command.

■ The Source Pane shows the line in your program that contained the
memory allocation statement. When you click on a backtrace ID, the
Memory Debugger updates the Source Pane to show the line. The line
number associated with this line is the same line number that appears in
the Process Window Source Pane.

You can set two preferences for Leak Detection views. After displaying the
preferences dialog box, the Memory Debugger displays the following dialog
box:

Figure 35: Backtrace and Source
Panes

Figure 36: Leak Detection
Source View Preferences

Leak Detection Page

Debugging Memory Using TotalView: version 6.6 39

2. M
em

ory Tracker W
indow

To set preferences associated with the Source View, select the button
within the Generate View area on the left. The preferences are as follows:

Cache allocation data
For small-to-medium sized programs, you can increase
performance by caching allocation information. If the
program is large or has many processes, turn off cach-
ing, as it consumes a large amount of memory. How-
ever, turning off caching means that the Memory
Debugger fetches allocation data each time you gener-
ate a view.

Show byte counts as megabytes (MB) or kilobytes (KB)
By default, the Memory Debugger displays memory
sizes in KB. Selecting this check box tells the Memory
Debugger to choose the most convenient size.

Backtrace View The Backtrace View organizes the leaks in your program by the backtrace
number created by the Memory Debugger. To create this view, select
Backtrace View, and then select Generate View. In this view, the first col-
umn, Process, has a numeric list of all the backtrace ID numbers that the
Memory Debugger creates.

When you look at one backtrace, you might be seeing the rolling together
of many leaks into one. You can tell how many leaks are associated with

Figure 37: Leak Detection
Page: Backtrace View

Heap Status Page

40 Chapter 2: Using the Memory Debugger Window

one ID by looking at the Count column. In this example, nine leaks are
associated with backtrace ID 1.

When you click on a line having a source code associated with it, the Mem-
ory Debugger displays that line in its Source Pane.

The backtrace being displayed is the one that existed when your program
allocated the memory block. The Memory Debugger highlights the frame
that it thinks is the one you should be focusing on. That is, it highlights
where the memory allocation was made. If it guesses wrong, you can reset
the hierarchy of backtraces by right-clicking your mouse on the back trace
that you want displayed, as follows.

From the context menu, select Set allocation focus level.

For example, assume that you have created a function named my_malloc()
that filters all of your memory allocations. The Memory Debugger would
probably guess that this is the function to highlight in the Backtrace Pane.
However, you probably want to set the allocation focus on the function
that called my_malloc(). Do this by selecting that function, and then right-
clicking on it to invoke this command.

To set preferences associated with the Backtrace View, select the button
within the Generate View area on the left. The preferences are as follows:

Cache allocation data
For small-to-medium sized programs, you can increase
performance by caching allocation information. If the
program is large or has many processes, turn off cach-
ing, as it consumes a large amount of memory. How-
ever, turning off caching means that the Memory
Debugger fetches allocation data each time you gener-
ate a view.

Show byte counts as megabytes (MB) or kilobytes (KB)
By default, the Memory Debugger displays memory
sizes in KB. Selecting this check box tells the Memory
Debugger to choose the most convenient size.

Heap Status Page ______________________
The Heap Status Page displays information about all memory blocks that
your program has not yet freed. The views shown in this page can be quite
large. Like the Leak Detector Page, you can tell the Memory Debugger to

Figure 38: Backtrace and Source
Panes

Heap Status Page

Debugging Memory Using TotalView: version 6.6 41

2. M
em

ory Tracker W
indow

display a Source View or a Backtrace View. The following figure shows a
Heap Status Source View

In most cases, an individual item is not very remarkable or noteworthy.
However, the “rolled-up” information about your allocations can help you
better understand your program’s behavior.

For example, if your program’s size is greater than you’d expect it to be,
you can select the Bytes column so that the largest allocations are all
grouped together. Concentrating on the statements allocating this memory
should lead you to the problem’s solution.

Similarly, if your program is allocating lots of little blocks of memory, these
allocations might be hurting performance. Looking at the information in
the Bytes and Count columns might also give you some hints about where
you can improve performance.

The Heap Status and Leak Detection Views contain the same type of infor-
mation. The only differences between these views and what you see in
Heap Status View are:

■ These views contain all memory allocations, not just allocations that
represent leaks.

■ If you select the Label leaked memory blocks preference, the Memory De-
bugger analyzes your heap allocations to see if the allocation represents

Figure 39: Heap Status
Page: Source View

Memory Usage Page

42 Chapter 2: Using the Memory Debugger Window

a leak. Although it displays all allocations, it displays leaked allocations
in color.

Be careful how many processes you select. With large multiprocess programs, you might
be asking the Memory Debugger to process and analyze an enormous amount of data.
In most cases, if you select one or two significant processes, you’ll receive the informa-
tion you need. Although the process of generating a view is lengthy, you can redisplay
the information quickly after the Memory Debugger creates it.

Memory Usage Page ___________________
The Memory Usage Page tells you how your program is using memory, and
where this memory is being used. One way to use this page is to compare
memory use over time, so that you can tell if your program is leaking mem-
ory. If a program is leaking memory, you’ll see that the amount of memory
being used steadily increases over time. You can also compare memory use
between processes, which can tell you if a process is using more memory
than you expect.

You do not need to enable memory debugging to obtain a Memory Usage View.

The Memory Debugger can present either a Process or Library View. The fol-
lowing figure shows an example of a Process View.

Clicking on a column header sorts the information from maximum to mini-
mum, or vice versa.

If you add the memory values of all columns except the last, the sum
doesn’t equal the last column’s value. There are several reasons for this.
For example, most operating systems divide segments into pages, and
information in a segment does not cross page boundaries. Another reason

Figure 40: Heap Status Preferences:
Source View

Memory Usage Page

Debugging Memory Using TotalView: version 6.6 43

2. M
em

ory Tracker W
indow

is that a process could map a file or an anonymous region. Areas such as
these are part of what appear in the Stack Virtual Memory column. How-
ever, they do not appear elsewhere.

The information in these columns is as follows:

Process The name of your process.

Text The amount of memory used to store your program’s
machine code instructions.

Data The amount of memory used to store uninitialized and
initialized data.

Heap The amount of memory currently being used for data
created at run time.

Stack The amount of memory used by the currently executing
routine and all the routines in its backtrace.

If you are looking at a multi-threaded process,
TotalView only shows information for the main thread’s
stack. The stack size of some threads does not change
over time on some architectures.

On some systems, the space allocated for a thread is
considered part of the heap.

Figure 41: Memory Usage
Page: Process View

Memory Usage Page

44 Chapter 2: Using the Memory Debugger Window

Stack Virtual Memory
The logical size of the stack. This value is the difference
between the current value of the stack pointer and the
value reported in the Stack column. This value can dif-
fer from the size of the virtual memory mapping in
which the stack resides.

Total Virtual Memory
The sum of the sizes of the mappings in the process's
address space.

The Library Pane shows which library files are contained within your execut-
able. In addition to the same kind of information shown in the Process
View, this view shows the amount of memory used by the text and data seg-
ments of these libraries. (See the following figure.)

Figure 42: Memory Usage
View: Library View

Debugging Memory Using TotalView: version 6.6 45

Using the dheap
Command

3

The dheap command lets you track memory problems from within the CLI.
Although the dheap command lets you do everything that you can do using
the GUI, there are also a few things that are unique to the CLI. The follow-
ing list presents actions that you can perform in both:

■ To see the status of the Memory Debugger, use the dheap command.

■ To display information about the heap, use the dheap –info command.
You can show information for the entire heap or limit what TotalView dis-
plays to just a part of it.

■ To enable and disable the Memory Debugger, use the dheap –enable and
dheap –disable commands.

■ To start and stop error notification, use the dheap –notify and dheap
–nonotify commands.

■ To check for leaks, use the dheap –leaks command.

■ To paint memory with a bit pattern, use the dheap –paint command.

■ To hoard memory, use the dheap –hoard command.

There are several dheap options not yet available in the GUI.

dheap Example________________________
The following example shows the kind of information that the CLI displays
after the Memory Debugger locates an error:

d1.<> dheap
 process: Enable Notify Available
 1 (18993): yes yes yes
 1.1 realloc: Address does not match any allocated
block.: 0xbfffd87c

dheap Example

46 Chapter 3: Using the dheap Command

d1.<> dheap -info -backtrace
process 1 (18993):
 0x8049e88 -- 0x8049e98 0x10 [16]
 flags: 0x0 (none)
 : realloc PC=0x400217e5 [/.../malloc_wrappers_dlopen.c]
 : argz_append PC=0x401ae025 [/lib/i686/libc.so.6]
 : __newlocale PC=0x4014b3c7 [/lib/i686/libc.so.6]
 :
...
.../malloc_wrappers_dlopen.c]
 : main PC=0x080487c4 [../realloc_prob.c]
 : __libc_start_main PC=0x40140647 [/lib/i686/libc.so.6]
 : _start PC=0x08048621 [/.../realloc_prob]

 0x8049f18 -- 0x8049f3a 0x22 [34]
 flags: 0x0 (none)
 : realloc PC=0x400217e5 [/.../malloc_wrappers_dlopen.c]
 : main PC=0x0804883e [../realloc_prob.c]
 : __libc_start_main PC=0x40140647 [/lib/i686/libc.so.6]
 : _start PC=0x08048621 [/.../realloc_prob]

The information that is displayed in this example is explained in more
detail later in this chapter.

dheap

Debugging Memory Using TotalView: version 6.6 47

3. U
sing dheap

dheap Controls heap debugging

Format: Shows Memory Debugger state

dheap [–status]

Shows information about a backtrace

dheap –backtrace [subcommands]
Enables or disables the Memory Debugger

dheap { –enable | –disable }

Enables or disables the retaining (hoarding) of freed memory blocks

dheap –hoard [subcommands]
Displays Memory Debugger information

dheap –info [subcommands]
Indicates whether an address is in a deallocated block

dheap –is_dangling address
Locates memory leaks

dheap –leaks [–check_interior]

Enables or disables Memory Debugger event notification

dheap –[no]notify

Paints memory with a distinct pattern

dheap –paint [subcommands]
Enables or disables allocation and reallocation notification

dheap –tag_alloc subcommand [start_address [end_address]]
Displays the Memory Debugger version number

dheap –version

Arguments: [–status] Displays the current state of the Memory Debugger.
This tells you if a process is capable of having its heap
operations traced and if TotalView will notify you if a
notifiable heap event occurs. If TotalView stops a
thread because one of these events occur, it displays
information about this event.

If you do not use other options to the dheap com-
mand, you can omit this option.

–backtrace [subcommands]
Shows the current settings for the backtraces associ-
ated with a memory allocation. This information
includes the depth and the trim (described later in this
section).

–status Tells TotalView to display backtrace information. If you
do not use other backtrace options, you can omit this
option.

dheap

48 Chapter 3: Using the dheap Command

–set_depth depth
–reset_depth

Set or reset the depth. The depth is the maximum num-
ber of PCs that the Memory Debugger includes when it
creates a backtrace. (The backtrace is created when a
memory block is allocated or reallocated.) The depth
value starts after the trim value. That is, the number of
excluded frames does not include the trimmed frames.

When you use the –reset_depth option, TotalView either
restores its default setting or the setting you set using
the TV_HEAP_ARGS environment variable.

–set_trim trim
–reset_trim

Sets or resets the trim. The trim describes the number
of PCs from the top of the stack that the Memory
Debugger ignores when it creates a backtrace. As the
backtrace includes procedure calls from within the
Memory Debugger, setting a trim value removes them
from the backtrace. The default is to exclude Memory
Debugger procedures. Similarly, your program might
call the heap manager from within library code. If you
do not want to see call frames showing a library, you
can exclude them.

When you use the –reset_trim option, TotalView either
restores its default setting or the setting you set using
the TV_HEAP_ARGS environment variable.

–display backtrace_id
Displays the stack frames associated with the back-
trace identified by backtrace_id.

–enable/–disable Using the –enable option tells TotalView to use the
Memory Debugger agent to record heap events the
next time you start the program. Using the –disable
option tells TotalView to not use the agent the next
time you start your program.

If necessary, you must preload the agent (see Chapter
4, “Creating Programs for Memory Debugging,” on page 61
for information) before using this option.

–hoard [subcommands]
Tells the Memory Debugger not to surrender allocated
blocks back to your program’s heap manager. If you do
not type a subcommand, the Memory Debugger dis-
plays information about the hoarded blocks. For more
information, see “Memory Reuse: dheap –hoard” on
page 55.

[–status] Displays hoard settings. Information displayed indi-
cates if hoarding is enabled, if deallocated blocks are
added to the hoard (or only those that are tagged), the
maximum size of the hoard, and the hoard’s current
size.

dheap

Debugging Memory Using TotalView: version 6.6 49

3. U
sing dheap

If you do not use other hoarding options, you can omit
the –status option when you want to see status infor-
mation.

–display [start_address [end_address]]
Displays the contents of the hoard. You can restrict the
display by specifying start_address and end_address. If you
omit end_address or use a value of 0, the Memory
Debugger displays all contents beginning at
start_address and going to the end of the hoard.

The CLI displays hoarded blocks in the order in which
your program deallocated them.

–set [on | off]
Enables and disables hoarding.

–reset Resets the Memory Debugger settings for hoarding
back to their initial value.

–set_all_deallocs [on | off]
Tells the Memory Debugger whether to hoard deallo-
cated blocks.

–reset_all_deallocs
Resets the Memory Debugger settings for hoarding of
deallocated blocks to its initial value.

–set_max_kb num_kb
Sets the maximum size of the hoarded information.

–set_max_blocks num_blocks
Set the maximum number of hoarded blocks.

–reset_max_kb
–reset_max_blocks

Resets a hoarding size value back to its default.

–info [subcommand]
Displays information about the heap or regions of the
heap within a range of addresses. If you do not use the
address arguments, the CLI displays information about
all heap allocations.

The information that the Memory Debugger displays
includes the start address, a block’s length, and other
information such as flags or attributes.

–backtrace
Tells the CLI to display backtrace information. This list
can be very long.

start_address
If you just type a start_address, the CLI reports on all
allocations beginning at and following this address. If
you also type an end_address, the CLI limits the display
to those allocations between the start_address and the
end_address.

end_address
If you also specify an end_address, the CLI reports on all
allocations between start_address and end_address. If you

dheap

50 Chapter 3: Using the dheap Command

type 0, it’s the same as omitting this argument; that is,
the Memory Debugger displays information from the
start_address to the end of the address space.

–is_dangling address
Indicates if an address that was once allocated and not
yet recycled by the heap manager is now deallocated.

–leaks Locates all memory blocks that your program allo-
cated and which are no longer referenced. That is,
using this command tells the Memory Debugger to
locate all dangling memory. For more information, see
“Detecting Leaks: dheap –leaks” on page 57.

By default, the Memory Debugger only checks to see if
the starting location of an allocated memory block is
referenced.

–check_interior
Tells the Memory Debugger to consider a memory
block as being referenced if the interior portion of it is
referenced.

–[no]notify Using the –notify option tells TotalView to stop your
program’s execution when the Memory Debugger
detects a notifiable event, and then print a message (or
display a dialog box if you are also using the GUI) that
explains what just occurred. The Memory Debugger can
notify you when heap memory errors occur or when
tagged blocks are deallocated or reallocated.

Using the –nonotify option tells TotalView not to stop
execution. Even if you type the –nonotify option,
TotalView tracks heap events.

–paint [subcommands]
Enables and disables block painting and shows status
information. (For more information on block painting,
see “Block Painting: dheap –paint” on page 58.)

[–status] Shows the current paint settings. These are either the
values you set using other painting options or their
default values.

If you do not use a subcommand to the –paint option,
the Memory Debugger shows the block painting status
information.

–set_alloc [on | off]
–set_dealloc [on | off]
–set_zalloc [on | off]

The on options enable block painting. They tell the
Memory Debugger to paint a block when your pro-
gram’s heap manager allocates, deallocates, or uses a
memory function that sets memory blocks to zero.

You can only paint zero-allocated blocks if you are also
painting regular allocations.

The off options disable block painting.

dheap

Debugging Memory Using TotalView: version 6.6 51

3. U
sing dheap

–reset_alloc
–reset_dealloc
–reset_zalloc

Reset the Memory Debugger settings for block painting
to their initial values or to values typed in a startup file.

–set_alloc_pattern pattern
–set_dealloc_pattern pattern

Set the pattern that the Memory Debugger uses the
next time it paints a block of memory. The maximum
width of pattern can differ between operating systems.
However, your pattern can be shorter.

–reset_alloc_pattern
–reset_dealloc_pattern

Reset the patterns used when the Memory Debugger
paints memory to the Memory Debugger default val-
ues.

–tag_alloc subcommand [start_address [end_address]]
Tells the Memory Debugger to mark a block so that it
can notify you when your program deallocates or real-
locates a memory block. (For more information, see
“Deallocation Notification: dheap –tag_alloc” on page 59.)

When tagging memory, if you do not specify address
arguments, the Memory Debugger either tags all allo-
cated blocks or removes the tag from all tagged blocks.

–[no]hoard_on_dealloc
Tells the Memory Debugger that it should not release
tagged memory back to your program’s heap manager
for reuse when it is deallocated—this is used in con-
junction with hoarding. To reenable memory reuse, use
the –nohoard_on_dealloc subcommand. See “Memory
Reuse: dheap –hoard” on page 55 for more information.

If you use this option, the memory tracker only hoards
tagged blocks. In contrast, if you use the dheap –hoard
–set_all_deallocs on command, the Memory Debugger
hoards all deallocated blocks.

–[no]notify_dealloc
–[no]notify_realloc

Enable or disable notification when your program deal-
locates or reallocates a memory block.

start_address
If you only type a start_address, the Memory Debugger
either tags or removes the tag from the block that con-
tains this address. The action it performs depends on
the subcommand you use.

end_address
If you also specify an end_address, the Memory Debugger
either tags all blocks beginning with the block contain-
ing the start_address and ending with the block contain-
ing the end_address or removes the tag. The action it

dheap

52 Chapter 3: Using the dheap Command

performs depends on the subcommand you use. If
end_address is 0 (zero) or you do not type an end_address,
the Memory Debugger tags or removes the tag from all
addresses beginning with start_address to the end of the
heap.

–version Displays the Memory Debugger version number.

Description: The dheap command controls the TotalView Memory Debugger. The Mem-
ory Debugger can:

■ Tell TotalView to use the Memory Debugger agent to track memory er-
rors.

■ Stop execution when a free() error occurs, and display information you
need to analyze the error. For more information, see “Notification When free
Problems Occur” on page 54.

■ Hoard freed memory so that it is not released to the heap manager. For
more information, see “Memory Reuse: dheap –hoard” on page 55.

■ Detect leaked memory by analyzing if a memory block is reachable. For
more information, see “Detecting Leaks: dheap –leaks” on page 57.

■ Paint memory with a bit pattern when it is allocated and deallocated. For
more information, see “Block Painting: dheap –paint” on page 58.

■ Notify you when a memory block is deallocated or reallocated. For more
information, see “Deallocation Notification: dheap –tag_alloc” on page 59.

The first step when debugging memory problems is to type the dheap
–enable command. This command activates the Memory Debugger. You
must do this before your program begins executing. If you try to do this
after execution starts, TotalView tells you that it will enable the Memory
Debugger when you restart your program. For example:

d1.<> n
 64 > int num_reds = 15;
d1.<> dheap -enable
process 1 (30100): This will only take effect on restart

You can tell the Memory Debugger to stop execution if:

■ A free() problem exists by using the dheap –notify command.

■ A block is deallocated by using the dheap –tag_alloc –notify_dealloc
command.

■ A block is reallocated by using the dheap –tag_alloc –notify_realloc com-
mand.

If you enable notification, TotalView stops the process when it detects one
of these events. The Memory Debugger is always monitoring heap events,
even if you turned notification off. That is, disabling notification means that
TotalView does not stop a program when events occur. In addition, it does
not tell you that the event occurred.

While you can separately enable and disable notification in any group, pro-
cess, or thread, you probably only want to activate notification on the con-
trol group’s master process. Because this is the only process that TotalView
creates, it is the only process where TotalView can control the Memory

dheap

Debugging Memory Using TotalView: version 6.6 53

3. U
sing dheap

Debugger’s environment variable. For example, slave processes are nor-
mally created by an MPI starter process or as a result of using the fork() and
exec() functions. In these cases, TotalView simply attaches to them. For
more information, see Chapter 4, “Creating Programs for Memory Debugging,”
on page 61.

If you do not use a dheap subcommand, the CLI displays memory status
information. You only use the –status option when you want the CLI to dis-
play status information in addition to doing something else.

The information that the dheap command displays can contain a flag con-
taining additional information about the memory location. The following
table describes these flags:

While some dheap options obtain information on specific memory condi-
tions, you can use the following options throughout your session:

■ dheap or dheap –status: Displays Memory Debugger state information.
For example:
a1.<> dheap -status

process: Enable Notify Available
1 (18868): yes yes yes
2 (18947): n/a yes yes
3 (18953): n/a yes yes
4 (18956): n/a yes yes

■ dheap –version: Displays version information. You receive information for
each process as processes can be compiled with different versions of the
Memory Debugger. For example:
a1.<> dheap -version

process: Version
1 (18868): 1.001
2 (18947): 1.001
3 (18953): 1.001
4 (18956): 1.001

■ dheap –backtrace: Displays information about how much of the back-
trace is being displayed. For example:
a1.<> dheap -backtrace

process: Depth Trim
1 (18868): 32 5
2 (18947): 32 5
3 (18953): 32 5
4 (18956): 32 5

Flag Value Meaning
0x0001 Operation in progress
0x0002 notify_dealloc: you will be notified if the block is deallocated
0x0004 notify_realloc: you will be notified if the block is reallocated
0x0008 paint_on_dealloc: the Memory Debugger will paint the block

when it is deallocated
0x0010 dont_free_on_dealloc: the Memory Debugger will not free

the tagged block when it is deallocated
0x0020 hoarded: the Memory Debugger is hoarding the block

dheap

54 Chapter 3: Using the dheap Command

Using arguments to this command, you can change both the depth and the
trim values. Changing the depth value changes the number of stack frames
that the Memory Debugger displays in a backtrace display. Changing the
trim value eliminates the topmost stack frames.

■ dheap –info: Displays information about currently allocated memory
blocks. For example:
d1.<> dheap -info
process 1 (5320):

0x8049790 -- 0x804979a 0xa [10]
flags: 0x0 (none)

0x80497a0 -- 0x80497b4 0x14 [20]
flags: 0x0 (none)

0x80497b8 -- 0x80497d6 0x1e [30]
flags: 0x0 (none)

0x80497e0 -- 0x8049808 0x28 [40]
flags: 0x0 (none)

Notification When free Problems Occur
If you type dheap –enable –notify and then run your program, the Memory
Debugger notifies you if a problem occurs when your program tries to free
memory. (For more information, see Chapter 15 of the TotalView Users Guide.)

When execution stops, you can type dheap (with no arguments), to show
information about what happened. You can also use the dheap –info and
dheap –info –backtrace commands to display additional information. The
information displayed by these commands lets you locate the statement in
your program that caused the problem. For example:

d1.<> dheap
process: Enable Notify Available

1 (18993): yes yes yes
1.1 realloc: Address does not match any allocated block.:

0xbfffd87c

For each allocated region, the CLI displays the start and end address, and
the length of the region in decimal and hexadecimal formats. For example:

d1.<> dheap
process: Enable Notify Available

1 (30420): yes yes yes
1.1 free: Address is not the start of any allocated block.:

free: existing allocated block:
free: start=0x08049b00 length=(17 [0x11])
free: flags: 0x0 (none)
free: malloc PC=0x40021739 [/.../

malloc_wrappers_dlopen.c]
free: main PC=0x0804871b [../free_prob.c]
free: __libc_start_main PC=0x40140647 [/lib/i686/

libc.so.6]
free: _start PC=0x080485e1 [/.../free_prob]

free: address passed to heap manager: 0x08049b08

The Memory Debugger can also tell you when tagged blocks are deallo-
cated or reallocated. For more information, see “Deallocation Notification:
dheap –tag_alloc” on page 59.

dheap

Debugging Memory Using TotalView: version 6.6 55

3. U
sing dheap

Showing Backtrace Information: dheap –backtrace:
The backtrace associated with a memory allocation can contain many
stack frames that are part of the heap library, the Memory Debugger’s
library, and other related functions and libraries. You are not usually inter-
ested in this information, since these stack frames aren’t part of your pro-
gram. Using the –backtrace option lets you manage this information, as fol-
lows:

■ dheap –backtrace –set_trim value

Tells the Memory Debugger to remove—that is, trim—this number of
stack frames from the top of the backtrace. This lets you hide the stack
frames that you’re not interested in as they come from libraries.

■ dheap –backtrace –set_depth value

Tells the Memory Debugger to limit the number of stack frames to the
value that you type as an argument. The depth value starts after the trim
value. That is, the number of excluded frames does not include the frames
that were trimmed.

Memory Reuse: dheap –hoard
In some cases, you may not want your system’s heap manager to immedi-
ately reuse memory. You would do this, for example, when you are trying to
find problems that occur when more than one process or thread is allocat-
ing the same memory block. Hoarding allows you to temporarily delay the
block’s release to the heap manager. When the hoard has reached its
capacity in either size or number of blocks, the Memory Debugger releases
previously hoarded blocks back to your program’s heap manager.

The order in which the Memory Debugger releases blocks is the order in
which it hoards them. That is, the first blocks hoarded are the first blocks
released—this is a first-in, first-out (fifo) queue.

Hoarding is a two-step process, as follows:

1 Use the dheap –enable command to tell the Memory Debugger to
track heap allocations.

2 Use the dheap –hoard –set on command to tell the Memory Debugger
not to release deallocated blocks back to the heap manager. (The
dheap –hoard –set off command tells the Memory Debugger to no
longer hoard memory.) After you turn hoarding on, use the dheap
–hoard –set_all_deallocs on command to tell the Memory Debugger to
start hoarding blocks.

At any time, you can obtain the hoard’s status by typing the dheap –hoard
command. For example:

d1.<> dheap -hoard
All Max Max

process: Enabled deallocs size blocks Size Blocks
1 (10883): yes yes 16 (kb) 32 15 (kb) 9

The Enabled column contains either yes or no, which indicates whether
hoarding is enabled. The All deallocs column indicates if hoarding is occur-

dheap

56 Chapter 3: Using the dheap Command

ing. The next columns show the maximum size in kilobytes and number of
blocks to which the hoard can grow. The last two columns show the current
size of the hoard, again, in kilobytes and the number of blocks.

As your program executes, the Memory Debugger adds the deallocated
region to a FIFO buffer. Depending on your program’s use of the heap, the
hoard could become quite large. You can control the hoard’s size by setting
the maximum amount of memory in kilobytes that the Memory Debugger
can hoard and the maximum number of hoarded blocks.

dheap –hoard –set_max_kb num_kb
Sets the maximum size in kilobytes to which the hoard
is allowed to grow. The default value on many operating
systems is 32KB.

dheap –hoard –set_max_blocks num_blocks
Sets the maximum number of blocks that the hoard
can contain.

You can tell which blocks are in the hoard by typing the dheap –hoard
–display command. For example:

d1.<> dheap -hoard -display
process 1 (10883):

0x804cdb0 -- 0x804d3b0 0x600 [1536]
flags: 0x32 (hoarded)

0x804d3b8 -- 0x804dab8 0x700 [1792]
flags: 0x32 (hoarded)

0x804dac0 -- 0x804e2c0 0x800 [2048]
flags: 0x32 (hoarded)

0x804fce8 -- 0x804fee8 0x200 [512]
flags: 0x32 (hoarded)

0x804fef0 -- 0x80502f0 0x400 [1024]
flags: 0x32 (hoarded)

Checking for Dangling Pointers: dheap –is_dangling:
The dheap –is_dangling command lets you determine if a pointer is still
pointing into a deallocated memory block.

You can also use the dheap –is_dangling command to determine if an
address refers to a block that was once allocated but has not yet been
recycled. That is, this command lets you know if a pointer is pointing into
deallocated memory.

Here’s a small program that illustrates a dangling pointer:

main(int argc, char **argv)
{

int *addr = 0; /* Pointer to start of block. */
int *misaddr = 0; /* Pointer to interior of block. */

addr = (int *) malloc (10 * sizeof(int));
 /* Point to interior of the block. */

misaddr = addr + 5;

dheap

Debugging Memory Using TotalView: version 6.6 57

3. U
sing dheap

/* addr and misaddr now dangling. */
free (addr);
printf ("addr=%lx, misaddr=%lx\n",

(long) addr, (long) misaddr);
}

If you set a breakpoint on the printf() statement and probe the addresses
of addr and misaddr, the CLI displays the following:

d1.<> dheap -is_dangling 0x80496d0
process: 0x80496d0

1 (19405): dangling

d1.<> dheap -is_dangling 0x80496e4
process: 0x80496e4

1 (19405): dangling interior

This example is contrived. When creating this example, the variables were
examined for their address and their addresses were used as arguments. In
a realistic program, you’d find the memory block referenced by a pointer
and then use that value. In this case, because it is so simple, using the CLI
dprint command gives you the information you need. For example:

d1.<> dprint addr
 addr = 0x080496d0 (Dangling) -> 0x00000000 (0)
d1.<> dprint misaddr
 misaddr = 0x080496e4 (Dangling Interior) -> 0x00000000 (0)

If a pointer is pointing into memory that is deallocated, and this memory is
being hoarded, the CLI also lets you know that you are looking at hoarded
memory.

Detecting Leaks: dheap –leaks
The dheap –leaks command locates memory blocks that were allocated
and are no longer referenced. It then displays a report that describes these
blocks; for example:

d1.<> dheap -leaks
process 1 (32188): total count 9, total bytes 450
* leak 1 -- total count 9 (100.00%), total bytes 450 (100%)

-- smallest / largest / average leak: 10 / 90 / 50
: malloc PC=0x40021739 [/.../malloc_wrappers_dlopn.c]
: main PC=0x0804851e [/.../local_leak.cxx]
: __libc_start_main PC=0x40055647 [/lib/i686/libc.so.6]
: _start PC=0x080483f1 [/.../local_leak]

If you use the –check_interior option, the Memory Debugger considers a
block as being referenced if a pointer exists to memory inside the block.

In addition to providing backtrace information, the CLI:

■ Consolidates leaks made by one program statement into one leak re-
port. For example, leak 1 has nine instances.

■ Reports the amount of memory consumed for a group of leaks. It also tells
you what percentage of leaked memory this one group of memory is using.

■ Indicates the smallest and largest leak size, as well as telling you what
the average leak size is for a group.

dheap

58 Chapter 3: Using the dheap Command

You might want to paint a memory block when it is deallocated so that you
can recognize that the data pointed to is out-of-date. Tagging the block so
that you can be notified when it is deallocated is another way to locate the
source of problems.

Block Painting: dheap –paint
When your program allocates or deallocates a block, the Memory Debugger
can paint the block with a bit pattern. This makes it easy to identify unini-
tialized blocks, or blocks pointed to by dangling pointers.

Here are the commands that enable block painting:

■ dheap –paint –set_alloc on
■ dheap –paint –set_dealloc on
■ dheap –paint –set_zalloc on

Use the dheap –paint command to check the kind of painting that occurs
and what the current painting pattern is. For example:

d1.<> dheap -paint
Alloc Dealloc

process: Alloc Dealloc AllocZero pattern pattern
1 (1012): yes yes no 0xa110ca7f 0xdea110cf

Some heap allocation routines such as calloc() return memory initialized to
zero. Using the –set_zalloc_on command allows you to separately enable
the painting of the memory blocks altered by these kinds of routines. If you
do enable painting for routines that set memory to zero, the Memory
Debugger uses the same pattern that it uses for a normal allocation.

Here’s an example of painted memory:

d1.<> dprint *(red_balls)
 *(red_balls) = {

value = 0xa110ca7f (-1592735105)
x = -2.05181867705792e-149
y = -2.05181867705792e-149
spare = 0xa110ca7f (-1592735105)
colour = 0xa110ca7f -> <Bad address: 0xa110ca7f>

}

The 0xall0ca7f allocation pattern resembles the word “allocate”. Similarly,
the 0xdea110cf deallocation pattern resembles “deallocate”.

Notice that all of the values in the red_balls structure in this example aren’t
set to 0xall0ca7f. This is because the amount of memory used by elements
of the variable use more bits than the 0xall0ca7f bit pattern. The following
two CLI statements show the result of printing the x variable, and then
casting it into an array of two integers:

d1.<> dprint (red_balls)->x
 (red_balls)->x = -2.05181867705792e-149
d1.<> dprint {*(int[2]*)&(red_balls)->x}
 (int[2])&(red_balls)->x = {
 [0] = 0xa110ca7f (-1592735105)
 [1] = 0xa110ca7f (-1592735105)

(Diving in the GUI is much easier.)

dheap

Debugging Memory Using TotalView: version 6.6 59

3. U
sing dheap

You can tell the Memory Debugger to use a different pattern by using the
following two commands:

■ dheap –paint –set_alloc_pattern pattern

■ dheap –paint –set_dealloc_pattern pattern

Deallocation Notification: dheap –tag_alloc
You can tell the Memory Debugger to tag information within the Memory
Debugger’s tables and to notify you when your program either frees a block
or passes it to realloc() by using the following two commands:

■ dheap –tag_alloc –notify_dealloc

■ dheap –tag_alloc –notify_realloc

Tagging is done within the Memory Debugger’s agent. It tells the Memory
Debugger to watch those memory blocks. Arguments to these commands
tell the Memory Debugger which blocks to tag. If you do not type address
arguments, TotalView notifies you when your program frees or reallocates
an allocated block. The following example shows how to tag a block and
how to see that a block is tagged:

d1.<> dheap -tag_alloc -notify_dealloc 0x8049a48
process 1 (19387): 1 record(s) update
d1.<> dheap -info
process 1 (19387):

0x8049a48 -- 0x8049b48 0x100 [256]
flags: 0x2 (notify_dealloc)

0x8049b50 -- 0x8049d50 0x200 [512]
flags: 0x0 (none)

0x8049d58 -- 0x804a058 0x300 [768]
flags: 0x0 (none)

Using the –notify_dealloc subcommand tells the Memory Debugger to let
you know when a memory block is freed or when realloc() is called with its
length set to zero. If you want notification when other values are passed to
the realloc() function, use the –notify_realloc subcommand.

After execution stops, here is what the CLI displays when you type another
dheap –info command:

d1.<> dheap -info
process 1 (19387):

0x8049a48 -- 0x8049b48 0x100 [256]
flags: 0x3 (notify_dealloc, op_in_progress)

0x8049b50 -- 0x8049d50 0x200 [512]
flags: 0x0 (none)

0x8049d58 -- 0x804a058 0x300 [768]

TV_HEAP_ARGS

60 Chapter 3: Using the dheap Command

TV_HEAP_ARGS Environment variable for presetting Memory Debugger values

When you start TotalView, it looks for the TV_HEAP_ARGS environment vari-
able. If it exists, TotalView reads values placed in it. If one of these values
changes a Memory Debugger default value, the Memory Debugger uses this
value as the default.

If you select a <Default> button in the GUI or a reset option in the CLI, the
Memory Debugger resets the value to the one you set here, rather than to
its default.

TV_HEAP_ARGS
Values

The values that you can enter into this variable are as follows:

display_allocations_on_exit
Tells the Memory Debugger to dump the allocation
table when your program exits. If your program ends
because it received a signal, the Memory Debugger
might not be able to dump this table.

backtrace_depth depth
Sets the backtrace depth value. See “Showing Backtrace
Information: dheap –backtrace:” on page 55 for more infor-
mation.

backtrace_trim trim
Sets the backtrace trim value. See “Showing Backtrace
Information: dheap –backtrace:” on page 55 for more infor-
mation.

memalign_strict_alignment_even_multiple
The Memory Debugger provides an integral multiple of
the alignment rather than the even multiple described
in the Sun memalign documentation. By including this
value, you are telling the Memory Debugger to use the
Sun alignment definition. However, your results might
be inconsistent if you do this.

output fd int
output file pathname

Sends output from the Memory Debugger to the file
descriptor or file that you name.

verbosity int Sets the Memory Debugger’s verbosity level. If the level
is greater than 0, the Memory Debugger sends informa-
tion to stderr. The values you can set are:

0: Display no information. This is the default.

1: Print error messages.

2: Print all relevant information.

This option is most often used when debugging Mem-
ory Debugger problems. Setting the TotalView VERBOSE
CLI variable does about the same thing.

Example: When you are entering more than one value, separate entries with spaces.
For example:

setenv TV_HEAP_ARGS output file “my_file backtrace_depth 16”

Memory Debugging Using TotalView: version 6.6 61

Creating Programs
for Memory
Debugging

4

The TotalView Memory Debugger puts its heap agent between your
program and its heap library. This allows the agent to intercept the
calls that your program makes to this library. After it intercepts the
call, it checks it for errors, and then sends it on to the library so that
it can be processed. The Memory Debugger agent does not replace
standard memory functions; it just monitors what they do. For more
information, see “Behind the Scenes” on page 5.

You can incorporate the agent into your environment either by:

■ Linking your application with the agent.
■ Requesting that the agent’s library be preloaded by setting a run-

time loader environment variable. This is only done when your
program will attach to another program that it did not start and
you want the Memory Debugger to locate problems in this second
application.

AIX applications differ from applications running on other platforms
as AIX does not support interposition. However, TotalView can
replace the AIX heap library.

Topics in this section are:

■ “Linking Your Application With the Agent” on page 61
■ “Attaching to Programs” on page 63

Linking Your
Application With
the Agent

In some situations, you need to explicitly link the Memory Debugger’s
agent directly to your program. For example, if you are debugging an MPI
program, your starter program might not propagate environment variables.

On AIX, you must always link your program so that malloc() can find the heap
replacement and agent. In addition, you only set your LIBPATH environment variable
when the tvheap_mr.a library is in your LIBPATH. If it isn’t, your program might not
load. You must use the –L options listed in the following table.

62 Chapter 4: Creating Programs for Memory Debugging

The following table lists additional linker command-line options that you
must use when you link your program:

The following list describes the options in this table:

path The absolute path to the agent in the TotalView instal-
lation hierarchy. More precisely, this directory is:

installdir/toolworks/totalview.version/platform/lib

installdir
The installation base directory name.

version The TotalView version number.

platform The platform tag.

path_mr The absolute path of the heap replacement library. This
value is determined by the person who installs the
TotalView malloc replacement library.

Since it is easy to misinterpret the path specifications, you may want to see
what value TotalView uses when it sets a path. Here’s the procedure:

1 Start TotalView.
2 Enable the Memory Debugger by selecting the Tools > Memory Debugger

command, and then checking the Enable memory debugging checkbox.

Platform Compiler ABI Additional linker options
HP Tru64 Alpha
(version 5)

Compaq/KCC 64 –Lpath –ltvheap –rpath path
GCC 64 –Lpath –ltvheap –Wl,–rpath,path

IBM RS/6000
(all)

IBM/GCC
KCC

32/64
32
64

–Lpath_mr –Lpath
–Lpath_mr –Lpath --static_libKCC
–Lpath_mr –Lpath

AIX 4 IBM/KCC 32 –Lpath_mr –Lpath path/aix_malloctype.so \
–binitfini:aix_malloctype_init

64 –Lpath_mr –Lpath path/aix_malloctype64_4.so \
–binitfini:aix_malloctype_init

GCC 32 –Lpath_mr –Lpath \
path/aix_malloctype.so –Wl, –binitfini:aix_malloctype_init

64 –Lpath_mr –Lpath \
path/aix_malloctype64_4.so –Wl, –binitfini:aix_malloctype_init

AIX 5 IBM/GCC/KCC 32 –Lpath_mr –Lpath path/aix_malloctype.o

64 –Lpath_mr –Lpath path/aix_malloctype64_5.o

Linux x86 GCC/Intel/PGI 32 –Lpath –ltvheap –Wl,–rpath,path

KCC 32 –Lpath –ltvheap –rpath path
Linux x86-64 GCC/PGI 32 –Lpath –ltvheap –Wl,–rpath,path

64 –Lpath –ltvheap_64 –Wl,–rpath,path

Linux IA64 GCC/Intel 64 –Lpath –ltvheap –Wl,–rpath,path

SGI SGI/GCC/KCC 32 –Lpath –ltvheap –rpath path

64 –Lpath –ltvheap_64 –rpath path
Sun Sun/KCC/

Apogee
32 –Lpath –ltvheap –R path

Sun/KCC 64 –Lpath –ltvheap_64 –R path
GCC 32 –Lpath –ltvheap –Wl,–R,path

64 –Lpath –ltvheap_64 –Wl,–R,path

Memory Debugging Using TotalView: version 6.6 63

4. C
reating Program

s

3 Select the Process > Startup Parameters command and then select the
Environment Page. Type a value that is the same as or similar to the one
in the following figure:

Attaching to
Programs

When your program attaches to a process that is already running, the
Memory Debugger can not locate heap problems in that process unless
you manually set a Memory Debugger environment variable. The variable
that you use must be unique (or relatively so) on each platform. The follow-
ing table lists these variables:

You can display the value that TotalView uses by displaying the
Environment Page within the Process > Startup Parameters command. To
set this variable:

1 Start TotalView and enable memory debugging.
2 Open this dialog box and see what the value is for your environment.
3 Close TotalView.
4 Start the program to which you will be attaching as an argument to the

env command. For example, here’s how to set this variable on AIX:
env MALLOCTYPE user:tvheap_mr.a totalview my_prog

Do not set these environment variables so that the agent interposes itself when you exe-
cute any command. For example, use env to set this variable and run TotalView rather
than setenv. If you use setenv, you will run the agent against all your programs,
including system programs such as ls.

Platform Variable
HP Tru64 Alpha _RLD_LIST
IBM AIX MALLOCTYPE
Linux IA64 and x86 LD_PRELOAD
SGI Irix __RLDN32_LIST

_RLD64_LIST
Sun LD_PRELOAD

Using the Memory Debugger

64 Chapter 4: Creating Programs for Memory Debugging

Using the Memory Debugger ___________
This section describes using the Memory Debugger in various environ-
ments. This section describes the following environments and platforms:

■ MPICH
■ IBM PE
■ SGI MPI
■ RMS MPI

MPICH You use the Memory Debugger with MPICH MPI codes as follows. (Etnus
has tested this only on Linux x86.)

1 You must link your parallel application with the Memory Debugger’s
agent, as described in “Linking Your Application With the Agent” on page 61.
On most Linux x86 systems, type:
mpicc -g test.o -o test -Lpath -ltvheap -Wl,-rpath,path

2 Start TotalView using the –tv command-line option to the mpirun script in
the usual way; for example:
mpirun -tv mpirun-args test args
TotalView starts up on the rank 0 process.
Because you linked in the Memory Debugger’s agent, memory debugging
is automatically selected in your rank 0 process.

3 If you need to, configure the Memory Debugger.
4 Run the rank 0 process.

IBM PE You can use the Memory Debugger with IBM PE MPI codes.There are two
alternatives.

You will not be able to install tvheap_mr.a under AIX on your target system unless you
have installed the bos.adt.syscalls package, which is part of the System Calls Applica-
tion Development Toolkit.

The first is to place the following proc in your .tvdrc file:

Automatically enable memory error notifications
(without enabling memory debugging) for poe programs.
proc enable_mem {loaded_id} {

set mem_prog poe
set executable_name [TV::image get $loaded_id name]
set file_component [file tail $executable_name]

if {[string compare $file_component $mem_prog] == 0} {
puts "Enabling Memory Debugger for $file_component”
dheap -notify

}
}

Append this proc to the TotalView image load callbacks
so that it runs this macro automatically.
dlappend TV::image_load_callbacks enable_mem

Using the Memory Debugger

Memory Debugging Using TotalView: version 6.6 65

4. C
reating Program

s

Here’s the second method:

1 You must prepare your parallel application to use the Memory Debugger’s
agent, as described in “Linking Your Application With the Agent” on page 61
and “Installing tvheap_mr.a on AIX” on page 66. Here is an example that usu-
ally works:
mpcc_r -g test.o -o test -Lpath_mr -Lpath \

path/aix_malloctype.o
“Installing tvheap_mr.a on AIX” on page 66 contains additional information.

2 Start TotalView on poe in the usual way:
totalview poe -a test args

Because tvheap_mr.a is not in poe’s LIBPATH, enabling the Memory Debugger on
the poe process causes problems because poe cannot locate the tvheap_mr.a malloc
replacement library.

3 If you want TotalView to notify you when a heap error occurs in your appli-
cation (and you probably do), use the CLI to turn on notification, as fol-
lows:
➤ Open a CLI window by selecting the Tools > Command Line command

from the Process Window showing poe.
➤ In a CLI window, enter the dheap –notify command. This command

turns on notification in the poe process. The MPI processes to which
TotalView attaches inherit notification.

4 Run the poe process.

SGI MPI There are two ways to use the Memory Debugger on SGI MPI code. In most
cases, all you need do is select the Tools > Memory Debugging command,
select the mpirun process in the Process Set area, and then check the
Enable memory debugging check box on the mpirun process. Occasionally,
this can cause a problem. If it does, here’s what you should do:

1 Link your parallel application with the Memory Debugger’s agent, as
described in the Debugging Memory Problems chapter of the TotalView Users
Guide. Basically, the command you will enter is:
cc -n32 -g test.o -Lpath -ltvheap -rpath path \

-lmpi -o test
2 Start TotalView on the mpirun process. For example:
totalview mpirun -a mpirun-args test args

3 If you need to, configure the Memory Debugger.
4 Run the mpirun process.

RMS MPI Here's how to use the Memory Debugger with Quadrics RMS MPI codes.
(Etnus has tested this only on Linux x86.)

1 You do not need to link the application with the Memory Debugger
because the prun process propagates environment variables to the rank
processes. However, if you’d like to link the application with the Memory
Debugger’s agent, you can.

2 Start TotalView on prun; for example:
totalview prun -a prun-args test args

Installing tvheap_mr.a on AIX

66 Chapter 4: Creating Programs for Memory Debugging

3 Enable memory debugging by selecting the Tools > Memory Debugging
command, selecting the mpirun process in the Process Set area, and then
checking the Enable memory debugging check box. If you had linked in
the agent, this option is automatically selected.

4 If you want TotalView to notify you when a heap error occurs in your appli-
cation (and you probably do), check the Stop execution when an
allocation or deallocaction error occurs check box.

5 Run the prun process.

Installing tvheap_mr.a on AIX ___________
You must install the tvheap_mr.a library on each node upon which you will
be running the Memory Debugger agent. One way to do this is to place a
symbolic link in /usr/lib that points to the tvheap_mr.a library. If you do this,
you do not need to add special –L command-line options to your build. In
addition, there are no special requirements when using poe.

The rest of this section describes what you need to do if you cannot create
symbolic links. Even when you create symbolic links, you will still need to
recreate tvheap_mr.a whenever libc.a changes.

The aix_install_ tvheap_mr.sh script contains most of what you need to do.
This script is in the following directory:

toolworks/totalview.version/rs6000/lib/

For example, after you become root, enter the following commands:

cd toolworks/totalview.6.3.0-0/rs6000/lib
mkdir /usr/local/tvheap_mr
./aix_install_tvheap_mr.sh ./tvheap_mr.tar /usr/local/tvheap_mr

Use poe to create tvheap_mr.a on multiple nodes.

The pathname for the tvheap_mr.a library must be the same on each node.
This means that you cannot install this library on a shared file system.
Instead, you must install it on a file system that is private to the node. For
example, because /usr/local is usually only accessible from the node upon
which it is installed, you might want to install it there.

The tvheap_mr.a library depends heavily on the exact version of libc.a that
is installed on a node. If libc.a changes, you must recreate tvheap_mr.a by
re-executing the aix_install_tvheap_mr.sh script.

LIBPATH and
Linking

This section discusses compiling and linking your AIX programs. The fol-
lowing command adds path_mr and path to your program’s default
LIBPATH:

xlc -Lpath_mr -Lpath -o a.out foo.o

When malloc() dynamically loads tvheap_mr.a, it should find the library in
path_mr. When tvheap_mr.a dynamically loads tvheap.a, it should find it in
path.

Installing tvheap_mr.a on AIX

Memory Debugging Using TotalView: version 6.6 67

4. C
reating Program

s

The AIX linker allows you to relink executables. This means that you can
make an already complete application ready for the Memory Debugger’s
agent; for example:

cc a.out -Lpath_mr -Lpath -o a.out.new

Here's an example that does not link in the heap replacement library.
Instead, it allows you to dynamically set MALLOCTYPE:

xlC -q32 -g \
-L/usr/local/tvheap_mr \
-L/home/totalview/interposition/lib prog.o -o prog

The next example shows how you allow your program to access the Mem-
ory Debugger’s agent by linking in the aix_malloctype.o module:

xlc -q32 -g \
-L/usr/local/tvheap_mr \
-L/home/totalview/interposition/lib prog.o \

/home/totalview/interposition/lib/aix_malloctype.o \
-o prog

You can check that the paths made it into the executable by running the
dump command; for example:

% dump -Xany -Hv tx_memdebug_hello

tx_memdebug_hello:

 Loader Section
Loader Header Information

VERSION# #SYMtableENT #RELOCent LENidSTR
0x00000001 0x0000001f 0x00000040 0x000000d3

#IMPfilID OFFidSTR LENstrTBL OFFstrTBL
0x00000005 0x00000608 0x00000080 0x000006db

Import File Strings
INDEX PATH BASE MEMBER
0 /.../interpos/lib:/usr/.../lib:/usr/lib:/lib
1 libc.a shr.o
2 libC.a shr.o
3 libpthreads.a shr_comm.o
4 libpthreads.a shr_xpg5.o

Index 0 in the Import File Strings section shows that the search path the
runtime loader uses when it dynamically loads a library. Some MPI systems
propagate the preload library environment to the processes they will run;
others, do not. If they do not, you need to manually link them with the
tvheap library.

In some circumstances, you might want to link your program instead of set-
ting the MALLOCTYPE environment variable. If you set the MALLOCTYPE
environment variable for your program and it fork/execs a program that is
not linked with the agent, your program will terminate because it fails to
find malloc().

Installing tvheap_mr.a on AIX

68 Chapter 4: Creating Programs for Memory Debugging

Debugging Memory Problems Using TotalView: version 6.6 69

Index

Symbols
<Default> pattern 34
__RLDN32_LIST heap de-

bugging environ-
ment variable 63

_RLD_LIST heap debugging
environment vari-
able 63

_RLD64_LIST heap debug-
ging environment
variable 63

Numerics
0xa110ca7f allocation pat-

tern 26
0xa110ca7f bit pattern 58
0xdea110cf bit pattern 58
0xdea110cf deallocation

pattern 26

A
Address not at start of

block problems 13
agent’s shared library 6
aix_install_ tvheap_mr.sh

script 66
Allocate Paint Pattern dia-

log box 33
allocated blocks

seeing 54
allocation

0xa110ca7f pattern 26
block painting 2

allocation pattern 58
analyzing memory 42
Apply pattern to alloca-

tions check box 34
Apply pattern to dealloca-

tions check box 34

Apply pattern to zero ini-
tialized allocations
check box 34

attaching to programs 63
automatic variables 8

B
–backtrace option 53, 55
Backtrace pane 37
Backtrace View 39
backtrace_depth TV_

HEAP_ARGS value 60
backtrace_trim TV_HEAP_

ARGS value 60
backtraces 18, 22, 55

depth 53
setting depth 55
setting trim 55
trim 53
which displayed 22

bit painting
0xa110ca7f 26
0xdea110cf 26
multiple precision 26

bit pattern 33
in Variable Window 2
writing 2

bit patterns
writing 23

block painting 2, 16, 23
defined 2

breakpoints
internal 18

bss data error 19

C
Cache allocation data con-

figuration check box
39, 40

calloc() 33
–check_interior option 57

checking for problems 2
CLI commands

dheap 45, 47
columns

hiding 31
order 31
resizing 31
sorting 31

commands
Process > Startup Pa-

rameters 63
Tools > Memory Error

Details 18
concealed allocation 14
Configuration page 16, 23,

29, 30, 32
custody changes 15

D
dangling interior pointer 57
dangling pointer problems

23
dangling pointers 2, 56

example 24
dangling pointers and leaks

compared 11
data section 5, 8
data segment memory 43
deallocate

defined 8
deallocation

0xdea110cf pattern 26
block painting 2

deallocation pattern 58
depth, backtraces 55
dheap

–disable 45
–enable 45
example 45
–info 45
–nonotify 45

E

70 Index

–notify 45
status of Memory

Tracker 45
dheap command 45, 47
display_allocations_on_

exit TV_HEAP_ARGS
value 60

dont_free_on_dealloc flag
53

dynamically allocate space
12

E
Enable memory debugging

32
Enable Memory Debugging

check box 16
enabling

Memory Tracker 17
enabling Memory Debug-

ger 21
environment variables

TV_HEAP_ARGS 60

F
fifo hoard queue 55
finding deallocation prob-

lems 13
finding memory leaks 21
flag

hoarded 53
flags 53

dont_free_on_dealloc
53

notifiy_dealloc 53
notifiy_realloc 53
paint_on_dealloc 53

Fortran
tracking memory 5

frames
eliminating 53

free not allocated prob-
lems 13

free problems 2, 54
finding 17

freeing bss data error 19
freeing data section mem-

ory error 19
freeing freed memory 20
freeing memory that is al-

ready freed error 20
freeing stack memory error

19
freeing the wrong address

20
freeing the wrong address

error 20
freeing unallocated space

19

G
Generate View 30
Generate View button 29

H
header section 5
heap

defined 12
heap API problems 54
heap debugging 17

agent linking 61
attaching to programs

63
backtraces 49
enabling 17
enabling notification

52
environment variable

63
freeing bss data 19
freeing data section

memory error 19
freeing memory that is

already freed er-
ror 20

freeing stack memory
error 19

freeing the wrong ad-
dress 20

freeing unallocated
space 19

functions tracked 17
IBM PE 64
incorporating agent 61
interposition defined 5
LIBPATH environment

variable 61
linker command-line

options 62
linking 15, 61
linking the agent 61
monitoring events 52
MPICH 64
preloading 6
realloc problems 20
RMS MPI 65
setting environment

variable 63
SGI MPI 65
starting 17
stopping 17
stopping on memory

error 18
tvheap_mr.a

library 66
using 18

heap library functions 5
heap memory 43
Heap Status page 40
hiding columns 31

hoard capacity 55
Hoard Memory on deallo-

cation check box 35
–hoard option 55
hoarded flag 53
hoarding 16, 23, 27, 35, 55

block maximum 56
defined 2
enabling 55
KB size 56
size of hoard 35
status 55

I
–info option 54
internal breakpoint 18
interposition defined 5
–is_dangling option 56

L
LD_PRELOAD heap debug-

ging environment
variable 63

leak consolidation 57
leak detection 57

checking interior 57
Leak Detection page 12, 21
leaks

concealed ownership
14

custody changes 15
defined 2
listing 2
orphaned ownership

14
underwritten destruc-

tors
leaks 15

why they occur 13
leaks and dangling pointers

compared 11
–leaks option 57
LIBPATH and linking 66
Library View

Memory Usage page 42
line number 22
linking 4
linking the Memory Track-

er agent 61
linking with the Memory

Debugger 15
listing leaks 2
load file 4

M
machine code section 5
MALLOCTYPE heap debug-

ging environment
variable 63, 67

Maximum blocks to hoard
field 35

T

Debugging Memory Problems Using TotalView: version 6.6 71

Maximum KB to hoard field
35

memalign_strict_
alignment_even_
multiple TV_HEAP_
ARGS value 60

memory
analyzing 42
data segment 43
heap 43
maps 3
pages 3
stack 43
text segment 43
total virtual memory 44
virtual stack 44

memory block painting 16
Memory Blocks pane 36
Memory Debugger

enabling 21
functions tracked 5
linking with 15
using 15

Memory Debugging Com-
mand 5

Memory Error Details Win-
dow 18

memory error notification
17

memory hoarding 16
Memory Usage page 5, 42
memory, reusing 55
MPICH

and heap debugging 64

N
No stack trace available for

this memory error
message 18

notification 15, 17, 18, 35,
54

disabling 52
enabling 52
not notifying 17

–notify option 54
notify_dealloc flag 53
notify_realloc flag 53

O
order of columns 31
orphaned ownership 14
output TV_HEAP_ARGS

value 60

P
–paint option 58
paint_on_dealloc flag 53
painting 33, 58

allocation pattern 58
deallocation pattern 58
enabling 58

zero allocation 58
painting blocks 2
painting deallocated mem-

ory 27
pattern

<Default> 34
Pattern for allocations 33
Pattern for deallocations

field 34
PC, setting 13
pointers

dangling 2
passing 10
realloc problem 13

preloading Memory Debug-
ger agent 6

Process > Startup Parame-
ters command 63

Process Set area 21
Process Set selection 29
Process View

Memory Usage page 42
processes

limiting selection 30,
36, 42

program
mapping to disk 3

programs
compiling 4

R
reachable blocks 57
realloc

pointer problem 13
realloc errors 20
realloc not allocated prob-

lems 13
realloc problems 20

finding 17
realloc() problems 13
reference counting 15
resizing columns 31
Restart Enable button 17
restarting your program 17
reusing memory 55
running out of memory 14

S
sections

data 5, 8
header 5
machine code 5
symbol table 5

selecting the process set
29

Set allocation focus level
38, 40

setting the PC 13
showing backtrace 53
showing backtraces 55
slave processes 53

sorting columns 31
Source View 36
space, dynamically allocat-

ing 12
stack frames 10, 18

arranging 8
stack memory 10, 43
stack virtual memory 44
state information 53
–status option 53
Stop execution when an al-

location or dealloca-
tion error 17

Stop execution when an al-
location or dealloca-
tion error occurs
check box 35

stopping when free prob-
lems occur 2

strdup allocating memory
13

symbol table section 5

T
–tag_alloc 59
tagging 58, 59

notify on dealloc 59
notify on realloc 59

text segment memory 43
Tools > Memory Debug-

ging command 5
Tools > Memory Error De-

tails command 18
Tools > Watchpoint com-

mand 22, 26
tracking memory problems

17
tracking realloc problems

20
trim, backtrace 55
TV_HEAP_ARGS environ-

ment variable 60
backtrace_depth 60
backtrace_trim 60
display_allocations_

on_exit 60
memalign_strict_

alignment_even_
multiple 60

output 60
verbosity 60

tvheap_mr.a
aix_install_tvheap_

mr.sh script 66
and aix_malloctype.o

67
creating using poe 66
dynamically loading 66
libc.a requirements 66

U

72 Index

pathname require-
ments 66

relinking executables
on AIX 67

tvheap_mr.a library 66

U
underwritten destructors

15
using the Memory Debug-

ger 15

V
verbosity TV_HEAP_ARGS

value 60
–version option 53
virtual memory 44
virtual stack memory 44

W
watchpoints 23
wrong address, freeing 20

Z
zero allocation 58
zero allocation painting 58

	Contents
	Debugging Memory Problems
	Checking for Problems
	Programs and Memory
	Behind the Scenes
	Your Program’s Data
	The Data Section
	The Stack
	The Heap
	Finding Allocation Problems
	Finding Deallocation Problems
	realloc() Problems
	Finding Memory Leaks

	Using the Memory Debugger
	Memory Debugger Overview
	Enabling, Stopping, and Starting

	Finding free() and realloc() Problems
	Error Notification
	Types of Problems
	Freeing Unallocated Space
	Freeing Memory That Is Already Freed
	Tracking realloc() Problems
	Freeing the Wrong Address

	Finding Memory Leaks
	Using Watch Points

	Fixing Dangling Pointer Problems
	Dangling Pointers
	Block Painting
	Hoarding

	Using the Memory Debugger Window
	About the Memory Debugger
	Configuration Page
	Leak Detection Page
	Heap Status Page
	Memory Usage Page

	Using the dheap Command
	dheap Example
	dheap
	Notification When free Problems Occur
	Showing Backtrace Information: dheap -backtrace:
	Memory Reuse: dheap -hoard
	Checking for Dangling Pointers: dheap -is_dangling:
	Detecting Leaks: dheap -leaks
	Block Painting: dheap -paint
	Deallocation Notification: dheap -tag_alloc

	TV_HEAP_ARGS

	Creating Programs for Memory Debugging
	Linking Your Application With the Agent
	Attaching to Programs
	Using the Memory Debugger
	MPICH
	IBM PE
	SGI MPI
	RMS MPI

	Installing tvheap_mr.a on AIX
	LIBPATH and Linking

	Index

